【題目】如圖,已知平行四邊形的頂點(diǎn),,點(diǎn)軸正半軸上.按以下步驟作圖:①以點(diǎn)為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交邊,于點(diǎn),;②分別以點(diǎn),為圓心,大于的長(zhǎng)為半徑作弧,兩弧在內(nèi)交于點(diǎn);③作射線,交邊于點(diǎn).則點(diǎn)的坐標(biāo)為__________

【答案】

【解析】

依據(jù)勾股定理即可得到RtAOH中,AO,依據(jù)∠AGO=AOG,即可得到AG=AO,進(jìn)而得出HG1,可得G的坐標(biāo).

AOBC的頂點(diǎn)O0,0),A(﹣1,2),∴AH=1,HO=2,∴RtAOH中,AO,由題可得:OF平分∠AOB,∴∠AOG=EOG

又∵AGOE,∴∠AGO=EOG,∴∠AGO=AOG,∴AG=AO,∴HG1,∴G1,2).

故答案為:(1,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC 是等邊三角形,點(diǎn) P 在△ABC 內(nèi),PA=2,將△PAB 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到△P1AC,則 P1P 的長(zhǎng)等于( )

A. 2 B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,OACBD的交點(diǎn),過O點(diǎn)的直線EFAB、CD的延長(zhǎng)線分別交于E、F.

(1)證明:△BOE≌△DOF;

(2)當(dāng)EFAC時(shí),求證四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校要了解學(xué)生上學(xué)交通情況,選取七年級(jí)全體學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,畫出扇形統(tǒng)計(jì)圖(如圖),圖中公交車對(duì)應(yīng)的扇形圓心角為60°,“自行車對(duì)應(yīng)的扇形圓心角為120°,已知七年級(jí)乘公交車上學(xué)的人數(shù)為50人.

(1)七年級(jí)學(xué)生中,騎自行車和乘公交車上學(xué)的學(xué)生人數(shù)哪個(gè)更多?多多少人?

(2)如果全校有學(xué)生2400人,學(xué)校準(zhǔn)備的600個(gè)自行車停車位是否足夠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是型鋼材的截面,5個(gè)同學(xué)分別列出了計(jì)算它的截面積的算式,甲:;乙:;丙:;。;戊:.你認(rèn)為他們之中正確的是(

A. 只有甲和乙B. 只有丙和丁

C. 甲、乙、丙和丁D. 甲、乙、丙、丁和戊

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AB=4,BC=2,點(diǎn)OAB的延長(zhǎng)線上,OB=,∠AOE=60°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿射線OE方向運(yùn)動(dòng),以P為圓心,OP為半徑作⊙P,同時(shí)點(diǎn)QB點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿折線B-C-D向點(diǎn)D運(yùn)動(dòng),QD重合時(shí),PQ同時(shí)停止運(yùn)動(dòng),設(shè)P的運(yùn)動(dòng)時(shí)間t秒.

1)∠BOC= ,PA的最小值是 ;

2)當(dāng)⊙P過點(diǎn)C時(shí),求⊙P的劣弧與線段OA圍成的封閉圖形的面積;

3)當(dāng)⊙P與矩形ABCD的邊所在直線相切時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,∠ACB90°.

求作:射線CG,使得CGAB

下面是小東設(shè)計(jì)的尺規(guī)作圖過程.

作法:

①以點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑作弧,分別交AC,ABD,E兩點(diǎn);

②以點(diǎn)C為圓心,AD長(zhǎng)為半徑作弧,交AC的延長(zhǎng)線于點(diǎn)F;

③以點(diǎn)F為圓心,DE長(zhǎng)為半徑作弧,兩弧在∠FCB內(nèi)部交于點(diǎn)G;

④作射線CG.所以射線CG就是所求作的射線.

根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:連接FG、DE.

ADE _________,

∴∠DAE = _________

CGAB___________________)(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線y=ax2+bx,過點(diǎn)A(4,0)和點(diǎn)B(6,2),四邊形OCBA是平行四邊形,點(diǎn)M(t,0)為x軸正半軸上的點(diǎn),點(diǎn)N為射線AB上的點(diǎn),且AN=OM,點(diǎn)D為拋物線的頂點(diǎn).

(1)求拋物線的解析式,并直接寫出點(diǎn)D的坐標(biāo);

(2)當(dāng)△AMN的周長(zhǎng)最小時(shí),求t的值;

(3)如圖②,過點(diǎn)MMEx軸,交拋物線y=ax2+bx于點(diǎn)E,連接EM,AE,當(dāng)△AME與△DOC相似時(shí).請(qǐng)直接寫出所有符合條件的點(diǎn)M坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形的邊軸上,,過點(diǎn)的雙曲線,且,若的面積等于3,則的值等于(

A. 2B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案