【題目】某班準(zhǔn)備選一名學(xué)生參加數(shù)學(xué)史知識(shí)競(jìng)賽,現(xiàn)統(tǒng)計(jì)了兩名選手本學(xué)期的五次測(cè)試 成績(jī):甲:83,80,90,87, 85; 乙:78,92,82,89,84.

(1)請(qǐng)根據(jù)上面的數(shù)據(jù)完成下表:

極差

平均數(shù)

方差

10

________

________

_________

85

24.8

(2)請(qǐng)你推選出一名參賽選手,并用所學(xué)的統(tǒng)計(jì)知識(shí)說(shuō)明理由.

【答案】(1)85;11.6;14(2)見(jiàn)解析

【解析】

利用最大值減去最小值可得極差,求出n個(gè)數(shù)的和,然后除以n可得平均數(shù);利用方差公式S2=計(jì)算出方差.

解:(1)乙的極差=92-78=14,

甲的平均數(shù)=(83+80+90+87+ 85)÷5=85,

甲的方差==11.6,

(2)選擇甲參加比賽理由兩者的平均數(shù)一樣,兩者水平相當(dāng),但是甲的極差比乙的極差小,甲的方差也比乙的方差小,則甲比乙穩(wěn)定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線(xiàn)x軸于A(-2,0),B3,0)兩點(diǎn),交y軸于點(diǎn)C06).

1)寫(xiě)出a,b,c的值;

2)連接BC,點(diǎn)P為第一象限拋物線(xiàn)上一點(diǎn),過(guò)點(diǎn)AADx軸,過(guò)點(diǎn)PPDBC于交直線(xiàn)AD于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為t,AD長(zhǎng)為h

①求ht的函數(shù)關(guān)系式和h的最大值(請(qǐng)求出自變量t的取值范圍);

②過(guò)第二象限點(diǎn)DDEABBC于點(diǎn)E,若DP=CE,時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校對(duì)九年級(jí)學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,被抽到的學(xué)生從物理、化學(xué)、生物、地理、歷史和政治這六科中選出自己最喜歡的科目,將調(diào)查數(shù)據(jù)匯總整理后,繪制了兩幅不同的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:

1)被抽查的學(xué)生共有多少人?求出地理學(xué)科所在扇形的圓心角;

2)將折線(xiàn)統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校九年級(jí)學(xué)生約2000人請(qǐng)你估算喜歡物理學(xué)科的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,CE是外角平分線(xiàn),點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.

(1)求證:ABD∽△CED.

(2)若AB=6,AD=2CD,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ACB90°,sinA,BC8,點(diǎn)DAB的中點(diǎn),過(guò)點(diǎn)BCD的垂線(xiàn),垂足為點(diǎn)E.

(1)求線(xiàn)段CD的長(zhǎng);

(2)cosABE的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)稱(chēng)軸為直線(xiàn)x=﹣1的拋物線(xiàn)yax2+bx+ca≠0)與x軸相交于A,B兩點(diǎn).

1)若點(diǎn)A的坐標(biāo)為(﹣40),求點(diǎn)B的坐標(biāo).

2)若已知a1,點(diǎn)A的坐標(biāo)為(﹣3,0),C為拋物線(xiàn)與y軸的交點(diǎn).

①若點(diǎn)P在拋物線(xiàn)上,且SPOC4SBOC,求點(diǎn)P的坐標(biāo);

②設(shè)點(diǎn)Q是線(xiàn)段AC上的動(dòng)點(diǎn),作QDx軸交拋物線(xiàn)于點(diǎn)D,求線(xiàn)段QD長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷(xiāo)售一種成本為20元的商品,經(jīng)調(diào)研,當(dāng)該商品每件售價(jià)為30元時(shí),每天可銷(xiāo)售200件:當(dāng)每件的售價(jià)每增加1元,每天的銷(xiāo)量將減少5件.

求銷(xiāo)量與售價(jià)之間的函數(shù)表達(dá)式;

如果每天的銷(xiāo)量不低于150件,那么,當(dāng)售價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?

該商店老板熱心公益事業(yè),決定從每天的銷(xiāo)售利潤(rùn)中捐出100元給希望工程,為保證捐款后每天剩余利潤(rùn)不低于2900元,請(qǐng)直接寫(xiě)出該商品售價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”.

概念理解:在“矩形、菱形和正方形”這三種特殊四邊形中,不一定是“等鄰角四邊形”的是______

問(wèn)題探究:如圖,在等鄰角四邊形ABCD中,∠B=C,AB=3,BC=9,P為線(xiàn)段BC上一動(dòng)點(diǎn)(不包含端點(diǎn)B,C),Q為直線(xiàn)CD上一動(dòng)點(diǎn),連結(jié)PAPQ,在PQ的運(yùn)動(dòng)過(guò)程中始終滿(mǎn)足∠APQ=B,當(dāng)CQ達(dá)到最大時(shí),試求此時(shí)BP的長(zhǎng).

應(yīng)用拓展:在以60°為等角的等鄰角四邊形ABCD中,∠D=90°,若AB=3,AD=,試求等鄰角四邊形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,PBA延長(zhǎng)線(xiàn)上一點(diǎn),CGO的弦PCAABCCGAB,垂足為D

1)求證:PCO的切線(xiàn);

2)求證:;

3)過(guò)點(diǎn)AAEPCO于點(diǎn)E,交CD于點(diǎn)F,連接BE,若sinP,CF5,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案