【題目】如圖1所示,OA是⊙O的半徑,點(diǎn)D為OA上的一動(dòng)點(diǎn),過D作線段CD⊥OA交⊙O于點(diǎn)F,過點(diǎn)C作⊙O的切線BC,B為切點(diǎn),連接AB,交CD于點(diǎn)E.
(1)求證:CB=CE;
(2)如圖2,當(dāng)點(diǎn)D運(yùn)動(dòng)到OA的中點(diǎn)時(shí),CD剛好平分,求證:△BCE是等邊三角形;
(3)如圖3,當(dāng)點(diǎn)D運(yùn)動(dòng)到與點(diǎn)O重合時(shí),若⊙O的半徑為2,且∠DCB=45°,求線段EF的長(zhǎng).
【答案】(1)證明見解析;(2)證明見解析;(3)
【解析】(1)在圖1中,連接OB,根據(jù)切線的性質(zhì)可得出∠OBC=90°,由OA=OB可得出∠DAE=∠OBA,根據(jù)等角的余角相等可得出∠DEA=∠CBE,再結(jié)合對(duì)頂角相等即可得出∠CEB=∠CBE,利用等角對(duì)等邊可證出CB=CE;
(2)在圖2中,連接OF,OB,在Rt△ODF中,由OF=2OD可得出∠DOF=60°,結(jié)合CD剛好平分,可得出∠AOB=2∠AOF=120°,再利用四邊形內(nèi)角和為360°可求出∠C=60°,結(jié)合CB=CE即可證出△BCE是等邊三角形;
(3)在圖3中,連接OB,則△OBC為等腰直角三角形,進(jìn)而可求出OC的長(zhǎng)度,結(jié)合(1)的結(jié)論可求出OE的長(zhǎng)度,再根據(jù)EF=DF-OE即可求出線段EF的長(zhǎng).
證明:(1)在圖1中,連接OB.
∵CB為⊙O的切線,切點(diǎn)為B,
∴OB⊥BC,
∴∠OBC=90°.
∵OA=OB,
∴∠DAE=∠OBA.
∵∠DAE+∠DEA=90°,∠OBA+∠CBE=90°,
∴∠DEA=∠CBE.
∵∠CEB=∠DEA,
∴∠CEB=∠CBE,
∴CB=CE.
(2)在圖2中,連接OF,OB.
在Rt△ODF中,OF=OA=2OD,
∴∠OFD=30°,
∴∠DOF=60°.
∵CD剛好平分,
∴∠AOB=2∠AOF=120°,
∴∠C=360°﹣∠ODC﹣∠OBC﹣∠AOB=60°.
∵CB=CE,
∴△BCE是等邊三角形.
(3)解:在圖3中,連接OB.
∵∠OBC=90°,∠DCB=45°,
∴△OBC為等腰直角三角形,
∴BC=OB=2,OC=2.
又∵CB=CE,
∴OE=OC﹣CE=OC﹣BC=2﹣2,
∴EF=DF﹣OE=2﹣(2﹣2)=4﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四幅圖象分別表示變量之間的關(guān)系,請(qǐng)按圖象的順序,將下面的四種情境與之對(duì)應(yīng)排序.正確的順序是( )
①籃球運(yùn)動(dòng)員投籃時(shí),投出去的籃球的高度與時(shí)間的關(guān)系
②去超市購(gòu)買同一單價(jià)的水果,所付費(fèi)用與水果數(shù)量的關(guān)系
③李老師使用的是一種含月租的手機(jī)計(jì)費(fèi)方式,則他每月所付話費(fèi)與通話時(shí)間的關(guān)系
④周末,小明從家到圖書館,看了一段時(shí)間書后,按原速度原路返回,小明離家的距離與時(shí)間的關(guān)系
A. ①②③④ B. ①③④② C. ①③②④ D. ①④②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…如此進(jìn)行下去,直至得C17.
(1)寫出點(diǎn)的坐標(biāo)________
(2)若P(50,m)在第17段拋物線C17上,則m=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、F、G.
(1)點(diǎn)F到△ABC的邊_______的距離相等,點(diǎn)F到△ABC的頂點(diǎn)______的距離相等.
(2)若BC=6,AD=9,求AF的值.
(3)連接CG交AD于點(diǎn)H,當(dāng)∠BAC是多少度時(shí),△FGH為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鹽城市初級(jí)中學(xué)為了緩解校門口的交通堵塞,倡導(dǎo)學(xué)生步行上學(xué). 小麗步行從家去學(xué)校,圖中的線段表示小麗步行的路程s(米)與所用時(shí)間t(分鐘)之間的函數(shù)關(guān)系. 試根據(jù)函數(shù)圖像回答下列問題:
(1)小麗家離學(xué)校 米;
(2)小麗步行的速度是 米/分鐘;
(3)求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=x2﹣2x﹣3的圖象向上平移_____個(gè)單位,能使平移后的拋物線與x軸上兩交點(diǎn)以及頂點(diǎn)圍成等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB,AC的垂直平分線交BC于點(diǎn)E,G,若∠B+∠C=70°,則∠EAG=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)校開展的數(shù)學(xué)活動(dòng)課上,小明和小剛制作了一個(gè)正三樓錐(質(zhì)量均勻,四個(gè)面完全相同),并在各個(gè)面上分別標(biāo)記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;
(1)請(qǐng)用列表或者面樹狀圍的方法表示上述游戲中的所有可能結(jié)果.
(2)請(qǐng)分別隸出小明和小剛能贏的概率,并判新游戲的公平性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列條件中:①②③④中,能確△ABC是直角三角形的定條件有
A. ①② B. ③④ C. ①③④ D. ①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com