【題目】把一邊長為40cm的正方形硬紙板,進(jìn)行適當(dāng)?shù)募舨茫鄢梢粋長方形盒子(紙板的厚度忽略不計).
(1)如圖,若在正方形硬紙板的四角各剪一個同樣大小的正方形,將剩余部分折成一個無蓋的長方形盒子. ①要使折成的長方形盒子的底面積為484cm2 , 那么剪掉的正方形的邊長為多少?
②折成的長方形盒子的側(cè)面積是否有最大值?如果有,求出這個最大值和此時剪掉的正方形的邊長;如果沒有,說明理由.
(2)若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分折成一個有蓋的長方形盒子,若折成的一個長方形盒子的表面積為550cm2 , 求此時長方形盒子的長、寬、高(只需求出符合要求的一種情況).

【答案】
(1)解:①設(shè)剪掉的正方形的邊長為xcm.

則(40﹣2x)2=484,

即40﹣2x=±22,

解得x1=31(不合題意,舍去),x2=9,

∴剪掉的正方形的邊長為9cm.

②側(cè)面積有最大值.

設(shè)剪掉的小正方形的邊長為acm,盒子的側(cè)面積為ycm2

則y與a的函數(shù)關(guān)系為:y=4(40﹣2a)a,

即y=﹣8a2+160a,

即y=﹣8(a﹣10)2+800,

∴a=10時,y最大=800.

即當(dāng)剪掉的正方形的邊長為10cm時,長方形盒子的側(cè)面積最大為800cm2


(2)解:在如圖的一種剪裁圖中,設(shè)剪掉的長方形盒子的邊長為xcm.

2(40﹣2x)(20﹣x)+2x(20﹣x)+2x(40﹣2x)=550,

解得:x1=﹣35(不合題意,舍去),x2=15.

∴剪掉的長方形盒子的邊長為15cm.

40﹣2×15=10(cm),

20﹣15=5(cm),

此時長方體盒子的長為15cm,寬為10cm,高為5cm.


【解析】(1)①假設(shè)剪掉的正方形的邊長為xcm,根據(jù)題意得出(40﹣2x)2=484,求出即可;②假設(shè)剪掉的正方形的邊長為acm,盒子的側(cè)面積為ycm2 , 則y與x的函數(shù)關(guān)系為:y=4(40﹣2a)a,利用二次函數(shù)最值求出即可;(2)假設(shè)剪掉的長方形盒子的高為tcm,利用折成的一個長方形盒子的表面積為550cm2 , 得出等式方程求出即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,點滿足,軸于點

1)點的坐標(biāo)為 ,點的坐標(biāo)為

2)如圖1,若點軸上,連接,使,求出點的坐標(biāo);

3)如圖2,是線段所在直線上一動點,連接,平分,交直線于點,作,當(dāng)點在直線上運動過程中,請?zhí)骄?/span>的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD,直線l與直線ABCD相交于點E,F,點P是射線EA上的一個動點(不包括端點E),將△EPF沿PF折疊,使頂點E落在點Q處.

⑴若∠PEF48°,點Q恰好落在其中的一條平行線上,則∠EFP的度數(shù)為

⑵若∠PEF75°,∠CFQPFC,求∠EFP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一分鐘投籃測試規(guī)定,得6分以上為合格,得9分以上為優(yōu)秀,甲、乙兩組同學(xué)的一次測試成績?nèi)缦拢?

成績(分)

4

5

6

7

8

9

甲組(人)

1

2

5

2

1

4

乙組(人)

1

1

4

5

2

2


(1)請你根據(jù)上述統(tǒng)計數(shù)據(jù),把下面的圖和表補充完整;
一分鐘投籃成績統(tǒng)計分析表:

統(tǒng)計量

平均分

方差

中位數(shù)

合格率

優(yōu)秀率

甲組

2.56

6

80.0%

26.7%

乙組

6.8

1.76

86.7%

13.3%


(2)下面是小明和小聰?shù)囊欢螌υ,請你根?jù)(1)中的表,寫出兩條支持小聰?shù)挠^點的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的直角坐標(biāo)系中,每個小方格都是邊長為1的正方形,ABC的頂點均在格點上,點A的坐標(biāo)是(﹣3,﹣1).

(1)將ABC關(guān)于x軸對稱得到△A1B1C1,畫出△A1B1C1,并寫出點B1的坐標(biāo);

(2)把△A1B1C1平移,使點B1平移到B2(3,4),請作出△A1B1C1平移后的△A2B2C2,并寫出A2的坐標(biāo);

(3)已知ABC中有一點D(a,b),求△A2B2C2中的對應(yīng)點D2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,連接AC,拋物線y=x2﹣4x﹣2經(jīng)過A,B兩點.

(1)求A點坐標(biāo)及線段AB的長;
(2)若點P由點A出發(fā)以每秒1個單位的速度沿AB邊向點B移動,1秒后點Q也由點A出發(fā)以每秒7個單位的速度沿AO,OC,CB邊向點B移動,當(dāng)其中一個點到達(dá)終點時另一個點也停止移動,點P的移動時間為t秒.
①當(dāng)PQ⊥AC時,求t的值;
②當(dāng)PQ∥AC時,對于拋物線對稱軸上一點H,∠HOQ>∠POQ,求點H的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長春市地鐵1號線,北起北環(huán)站,南至紅咀子站,共設(shè)15個地下車站,2017年6月30日開通運營,標(biāo)志著吉林省正式邁進(jìn)“地鐵時代”,15個站點如圖所示.

某天,王紅從人民廣場站開始乘坐地鐵,在地鐵各站點做志愿者服務(wù),到A站下車時,本次志愿者服務(wù)活動結(jié)束,約定向紅咀子站方向為正,當(dāng)天的乘車記錄如下(單位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8

(1)請通過計算說明A站是哪一站?

(2)相鄰兩站之間的距離為1.3千米,求這次王紅志愿服務(wù)期間乘坐地鐵行進(jìn)的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王購買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:

(1)用含的代數(shù)式表示地面總面積;

(2)若=5,=,鋪1m2地磚的平均費用為80元,那么鋪地磚的總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加班長競選,需進(jìn)行演講答辯與民主測評,民主測評時一人一票,按“優(yōu)秀、良好、一般”三選一投票.如圖是7位評委對小明“演講答辯”的評分統(tǒng)計圖及全班50位同學(xué)民主測評票數(shù)統(tǒng)計圖.
(1)求評委給小明演講答辯分?jǐn)?shù)的眾數(shù),以及民主測評為“良好”票數(shù)的扇形圓心角度數(shù);
(2)求小明的綜合得分是多少?
(3)在競選中,小亮的民主測評得分為82分,如果他的綜合得分不小于小明的綜合得分,他的演講答辯得分至少要多少分?

查看答案和解析>>

同步練習(xí)冊答案