精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知在ABC中,ADBC于點D,BEAC于點E,且DF=DC。

(1)求證:BD=AD;

(2)AF=1,DC=3,求BF的長.

【答案】(1)證明見解析;(2)BF=5

【解析】

(1)、根據ADBCACBE得出∠EBC+C=90° ,CAD+C=90°,從而得出∠CAD=EBC,結合DF=DC得出ACD和△BFD全等,從而得出答案;(2)、根據全等得出AF=1,DC=3,DF=DC,BD=AD=4,最后根據Rt△ADC的勾股定理求出AC的長度,即BF的長度.

(1)證明 ADBC,

ACDBFD是直角三角形 (兩邊相互垂直的三角形是直角三角形), ACBE,

BEC=90°, EBC+C=90°, ACD是直角三角形,

CAD+C=90° (直角三角形的兩個銳角互余),

EBC+C=90° ,CAD+C=90°, CAD=EBC, ACD≌△BFD(AAS),

BD=AD(全等三角形的對應邊相等),

(2)、由(1)得ACD≌△BFD, BD=AD,AD=AC(全等三角形的對應邊相等),

AF=1,DC=3,DF=DC, BD=AD=4,又∵ADBC,

AD2+DC2=AC2(勾股定理), ∴BF=AC=5.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某通訊公司推出A、B兩種手機話費套餐,這兩種套餐每月都有一定的固定費用和免費通話時間,超過免費通話時間的部分收費標準為:A套餐a元/分,B套餐b元/分,使用A、B兩種套餐的通話費用y(元)與通話時間x(分)之間的函數圖象如圖所示.

(1)當手機通話時間為50分鐘時,寫出A、B兩種套餐的通話費用.
(2)求a,b的值.
(3)當選擇B種套餐比A種套餐更合算時,求通話時間x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,E是AD邊上一動點,AE=m,將△ABE沿BE折疊后得到△GBE.延長BG交直線CD于點F.

(1)若∠ABE:∠BFC=n,則n=
(2)當E運動到AD中點時,求線段GF的長;
(3)若限定F僅在線段CD上(含端點)運動,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,平面直角坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經過O,C兩點做拋物線y1=ax(x﹣t)(a為常數,a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數,k>0)

(1)填空:用含t的代數式表示點A的坐標及k的值:A , k=
(2)隨著三角板的滑動,當a= 時:
①請你驗證:拋物線y1=ax(x﹣t)的頂點在函數y= 的圖象上;
②當三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關系式及t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】折疊矩形紙片ABCD的一邊AD,使點D落在BC邊的點F,已知AB=8cm,BC=10cm,折痕AE的長( )

A. cm B. cm C. 12cm D. 13cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:我們把平面內與一個定點F和一條定直線l(l不經過點F)距離相等的點的軌跡(滿足條件的所有點所組成的圖形)叫做拋物線.點F叫做拋物線的焦點,直線l叫做拋物線的準線.
(1)已知拋物線的焦點F(0, ),準線l: ,求拋物線的解析式;
(2)已知拋物線的解析式為:y=x2﹣n2 , 點A(0, )(n≠0),B(1,2﹣n2),P為拋物線上一點,求PA+PB的最小值及此時P點坐標;
(3)若(2)中拋物線的頂點為C,拋物線與x軸的兩個交點分別是D、E,過C、D、E三點作⊙M,⊙M上是否存在定點N?若存在,求出N點坐標并指出這樣的定點N有幾個;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感,他驚喜的發(fā)現,當兩個全等的直角三角形如圖1或圖2擺放時,都可以用面積法來證明,下面是小聰利用圖1證明勾股定理的過程:

將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

證明:連結DB,過點DBC邊上的高DF,則DF=EC=b﹣a,

∵S四邊形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四邊形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

請參照上述證法,利用圖2完成下面的證明.

將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠ACB=90°,AC=BC,BDDE,AEDE,垂足分別為D、E.(這幾何模型具備“一線三直角”)如下圖:

(1)①請你證明:△ACE△CBD;②若AE=3,BD=5,DE的長;

(2)遷移:如圖:在等腰Rt△ABC中,且∠C=90°,CD=2,BD=3,D、E分別是邊BC,AC上的點,將DE繞點D順時針旋轉90°,點E剛好落在邊AB上的點F處,則CE=________。(不要求寫過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一個由傳感器A控制的燈,要裝在門上方離地面4.5m的墻上,任何東西只要移至該燈5m5m內,燈就會自動發(fā)光,小明身高1.5m,他走到離墻_______的地方燈剛好發(fā)光.

查看答案和解析>>

同步練習冊答案