【題目】如圖,在菱形ABCD中,∠BAD=120°,點(diǎn)E、F分別在邊AB、BC上,△BEF與△GEF關(guān)于直線EF對(duì)稱,點(diǎn)B的對(duì)稱點(diǎn)是點(diǎn)G,且點(diǎn)G在邊AD上.若EG⊥AC,AB=6 ,則FG的長為

【答案】3
【解析】解:∵四邊形ABCD是菱形,∠BAD=120°,
∴AB=BC=CD=AD,∠CAB=∠CAD=60°,
∴△ABC,△ACD是等邊三角形,
∵EG⊥AC,
∴∠AEG=∠AGE=30°,
∵∠B=∠EGF=60°,
∴∠AGF=90°,
∴FG⊥BC,
∴2SABC=BCFG,
∴2× ×(6 2=6 FG,
∴FG=3
故答案為3

首先證明△ABC,△ADC都是等邊三角形,再證明FG是菱形的高,根據(jù)2SABC=BCFG即可解決問題.本題考查菱形的性質(zhì)、等邊三角形的判定和性質(zhì)、翻折變換、菱形的面積等知識(shí),記住菱形的面積=底×高=對(duì)角線乘積的一半,屬于中考常考題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個(gè)單位長度,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)

(1)畫出將△ABC向上平移1個(gè)單位長度,再向右平移5個(gè)單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點(diǎn)O順時(shí)針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點(diǎn)P,滿足點(diǎn)P到A1與點(diǎn)A2距離之和最小,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,連接對(duì)角線AC、BD,將ABC沿BC方向平移,使點(diǎn)B移到點(diǎn)C,得到DCE.

(1)求證:ACD≌△EDC;

(2)請(qǐng)?zhí)骄?/span>BDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)C在第四象限,點(diǎn)B在x軸的正半軸上.∠OAB=90°且OA=AB,OB,OC的長分別是一元二次方程x2﹣11x+30=0的兩個(gè)根(OB>OC).

(1)求點(diǎn)A和點(diǎn)B的坐標(biāo).
(2)點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,B重合),過點(diǎn)P的直線l與y軸平行,直線l交邊OA或邊AB于點(diǎn)Q,交邊OC或邊BC于點(diǎn)R.設(shè)點(diǎn)P的橫坐標(biāo)為t,線段QR的長度為m.已知t=4時(shí),直線l恰好過點(diǎn)C.當(dāng)0<t<3時(shí),求m關(guān)于t的函數(shù)關(guān)系式.
(3)當(dāng)m=3.5時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABCDAF平分∠BADBC于點(diǎn)F,CE平分∠BCDAD于點(diǎn)E.

    

1              2

(1)求證:四邊形AFCE是平行四邊形;

(2)如圖2,BEEC,求證:四邊形ABFE是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊三角形ABC的邊長為6,在AC,BC邊上各取一點(diǎn)E、F,連接AF,BE相交于點(diǎn)P,若AE=CF,則∠APB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)飯店所有員工的月收入情況如下:

你認(rèn)為用來描述該飯店員工的月收入水平不太恰當(dāng)?shù)氖?/span>( )

A. 所有員工月收入的平均數(shù)

B. 所有員工月收入的中位數(shù)

C. 所有員工月收入的眾數(shù)

D. 所有員工月收入的中位數(shù)或眾數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,,,把一條長為2016個(gè)單位長度且沒有彈性的細(xì)線線的粗細(xì)忽略不計(jì)的一端固定在點(diǎn)A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的邊長為2,以O(shè)為圓心,EF為直徑的半圓經(jīng)過點(diǎn)A,連接AE,CF相交于點(diǎn)P,將正方形OABC從OA與OF重合的位置開始,繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,交點(diǎn)P運(yùn)動(dòng)的路徑長是

查看答案和解析>>

同步練習(xí)冊(cè)答案