【題目】如圖,將一張長方形大鐵皮切割成九塊,切痕如圖虛線所示,其中有兩塊是邊長都為xdm的大正方形,兩塊是邊長都為ydm的小正方形,五塊是長寬分別是xdm、ydm的全等小長方形,且xy

1)用含x、y的代數(shù)式表示長方形大鐵皮的周長為______dm;

2)若每塊小長方形的面積10dm2,四個正方形的面積為58dm2,試求該切痕的總長.

【答案】1)(6x+6y);(242dm

【解析】

1)由長方形的對邊相等容易得出結(jié)果;

2)由題意和圖形得出關(guān)系式,即可得出答案.

解:(1)根據(jù)題意得:長方形大鐵皮的周長=22x+y+x+2y=6x+6ydm);

故答案為:(6x+6y);

2)由題意可知:xy=10,2x2+2y2=58,

即:x2+y2=29

∵(x+y2=x2+2xy+y2=29+20=49

x+y=7,

∴切痕總長為6×7=42dm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,3)和B(﹣3,m).
(1)求反比例函數(shù)y1= 和一次函數(shù)y2=ax+b的表達(dá)式;
(2)點C 是坐標(biāo)平面內(nèi)一點,BC∥x 軸,AD⊥BC 交直線BC 于點D,連接AC.若AC= CD,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BC=12,E為AC邊的中點,線段BE的垂直平分線交邊BC于點D.設(shè)BD=x,tan∠ACB=y,則( )

A.x﹣y2=3
B.2x﹣y2=9
C.3x﹣y2=15
D.4x﹣y2=21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F為邊BC上兩點,且BECF,AFDE

1)求證:△ABF≌△DCE

2)四邊形ABCD是矩形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點.

(1)畫出ABC向右平移4個單位后得到的A1B1C1;

(2)圖中ACA1C1的關(guān)系是: _____________.

(3)畫出ABCAB邊上的高CD;垂足是D;

(4)圖中ABC的面積是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于(   .

A. 2 cm B. 4 cm C. 3 cm D. 5 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018密云生態(tài)半程馬拉松于610日鳴槍開跑.本屆賽事設(shè)有半程馬拉松和迷你馬拉松兩個參賽項目,涉及參賽選手5000人;另外,還有將近1200名醫(yī)護(hù)和社會志愿者參與本屆大賽的志愿服務(wù)活動.請你用科學(xué)記數(shù)法表示參加本屆賽事的所有參賽選手和志愿者的總?cè)藬?shù)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本學(xué)期學(xué)習(xí)了一元一次方程的解法,下面是林林同學(xué)的解題過程:解方程=1

解:方程兩邊同時乘以6,得:×6=1×6…………第①步

去分母,得:22x+1-x+2=6………………第②步

去括號,得:4x+2-x+2=6…………………第③步

移項,得:4x-x=6-2-2…………………第④步

合并同類項,得:3x=2…………………………第⑤步

系數(shù)化1,得:x=…………………………第⑥步

上述林林的解題過程從第______步開始出現(xiàn)錯誤,錯誤的原因是______

請你幫林林改正錯誤,寫出完整的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子中裝有除顏色外其余均相同的5個小球,其中紅球3個(記為A1 , A2 , A3),黑球2個(記為B1 , B2).
(1)若先從袋中取出m(m>0)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,填空:①若A為必然事件,則m的值為
②若A為隨機事件,則m的取值為
(2)若從袋中隨機摸出2個球,正好紅球、黑球各1個,用樹狀圖或列表法求這個事件的概率.

查看答案和解析>>

同步練習(xí)冊答案