【題目】如圖,在菱形ABCD中,∠BAD=70°,AB的垂直平分線交對角線AC于點F,垂足為E,連接DF,則∠CDF等于(
A.55°
B.65°
C.75°
D.85°

【答案】C
【解析】解:如圖,連接BF, 在菱形ABCD中,∠BAC= ∠BAD= ×70°=35°,∠BCF=∠DCF,BC=DC,
∠ABC=180°﹣∠BAD=180°﹣70°=110°,
∵EF是線段AB的垂直平分線,
∴AF=BF,∠ABF=∠BAC=35°,
∴∠CBF=∠ABC﹣∠ABF=110°﹣35°=75°,
∵在△BCF和△DCF中,
,
∴△BCF≌△DCF(SAS),
∴∠CDF=∠CBF=75°,
故選C.

如圖,連接BF,想辦法求出∠CBF=75°,再證明△BCF≌△DCF(SAS),即可解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點D從O點出發(fā),沿OM的方向以1cm/s的速度運動,當(dāng)D不與點A重合時,將△ACD繞點C逆時針方向旋轉(zhuǎn)60°得到△BCE,連結(jié)DE.

(1)求證:△CDE是等邊三角形;
(2)如圖2,當(dāng)6<t<10時,△BDE的周長是否存在最小值?若存在,求出△BDE的最小周長;若不存在,請說明理由;
(3)如圖3,當(dāng)點D在射線OM上運動時,是否存在以D、E、B為頂點的三角形是直角三角形?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC=BD=6,E、F、G、H分別是AB、BC、CD、DA的中點,則EG2+FH2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= 的圖象與一次函數(shù)y=ax+b的圖象交于點A(﹣2,3)和點B(m,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直線x=1上有一點P,反比例函數(shù)圖象上有一點Q,若以A、B、P、Q為頂點的四邊形是以AB為邊的平行四邊形,直接寫出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺舉辦的“中國漢字聽寫大會”節(jié)目受到中學(xué)生的廣泛關(guān)注,某中學(xué)為了了解學(xué)生對觀看“中國漢字聽寫大會”節(jié)目的喜愛程度,對該校部分學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制出如圖所示的兩幅統(tǒng)計圖.在條形圖中,從左向右依次為A類(非常喜歡),B類(較喜歡),C類(一般),D類(不喜歡),請結(jié)合兩幅統(tǒng)計圖,回答下列問題

(1)寫出本次抽樣調(diào)查的樣本容量;
(2)請補(bǔ)全兩幅統(tǒng)計圖;
(3)若該校有2000名學(xué)生.請你估計觀看“中國漢字聽寫大會”節(jié)目不喜歡的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形ABC的周長為30,其中一個內(nèi)角的余弦值為 ,則其腰長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年是襄陽“創(chuàng)建文明城市”工作的第二年,為了更好地做好“創(chuàng)建文明城市”工作,市教育局相關(guān)部門對某中學(xué)學(xué)生“創(chuàng)文”的知曉率,采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查,調(diào)查結(jié)果分為“非常了解”,“比校了解”,“基本了解”,和“不了解”四個等級.小輝根據(jù)調(diào)查結(jié)果繪制了如圖所示的統(tǒng)計圖,請根據(jù)提供的信息回答問題:
(1)本次調(diào)查中,樣本容量是;
(2)扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)的圓心角的度數(shù)是;在該校2000名學(xué)生中隨機(jī)提問一名學(xué)生,對“創(chuàng)文”不了解的概率估計值為;
(3)請補(bǔ)全頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AC上,且BD=CE,AD,BE相交于點F.
(1)求證:AD=BE;
(2)求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+ 與y軸相交于點A,點B與點O關(guān)于點A對稱

(1)填空:點B的坐標(biāo)是;
(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點C關(guān)于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案