【題目】已知,如圖,且,.其中、、共線且交于.
(1)如圖1,若為的中點(diǎn),且,求的長(zhǎng).
(2)如圖2,若,過(guò)點(diǎn)作交于點(diǎn),求證:
【答案】(1);(2)見(jiàn)解析
【解析】
(1)只要證明△DAC≌△EAB,推出CD=EB,∠ACD=∠ABE,由∠CFD=∠AFB,推出∠CDF=∠FAB=90°,再求出CD、BD,利用勾股定理求出BC即可解決問(wèn)題.
(2)如圖2中,延長(zhǎng)AE交BC于J.想辦法證明CA=CJ,BJ=BG即可解決問(wèn)題.
(1)如圖1中,
∵△ABC和△ADE均為等腰直角三角形,
∴∠BAC=∠EAD=90°,AB=AC,AE=AD=1,
∴∠EAB=∠DAC,
∴△DAC≌△EAB,
∴CD=EB=,∠ACD=∠ABE,
∵∠CFD=∠AFB,
∴∠CDF=∠FAB=90°,
∵DE=EB=CD=,
∴BC= ,
∴AB=AC=.
(2)如圖2中,延長(zhǎng)AE交BC于J.
∵DE=BE,DE=AE,
∴AE=EB,
∴∠EAB=∠EBA,
∵∠DEA=45°=∠EAB+∠EBA,
∵EF=BE,∠BAF=90°,
∴∠EAB=∠EBA=∠EBC=22.5°,
∴∠CAE=67.5°,
∴∠CJA=180°-∠CAJ-∠ACJ=67.5°,
∴∠CAJ=∠CJA,
∴CA=CJ=CB,
∵EG⊥AE,
∴∠AEG=∠GEJ=90°,
∴∠AGE=90°-22.5°=67.5°,
∵∠AGE=∠EBG+∠GEB,
∴∠BEG=45°=∠BEJ,
∵BE=BE,∠EBJ=∠EBG,
∴△EBJ≌△EBG(ASA),
∴BG=BJ,
∴BC=CJ+BJ=AB+BG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線AC,BD交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AB交AB的延長(zhǎng)線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.在此運(yùn)動(dòng)變化的過(guò)程中,下列結(jié)論:①△DFE是等腰直角三角形;②四邊形CDFE不可能為正方形;③四邊形CDFE的面積保持不變;④△CDE面積的最大值為8.其中正確的結(jié)論有( )個(gè).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是( )
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)積極組織學(xué)生開(kāi)展課外閱讀活動(dòng),為了解本校學(xué)生每周課外閱讀的時(shí)間量t(單位:小時(shí)),采用隨機(jī)抽樣的方法抽取部分學(xué)生進(jìn)行了問(wèn)卷調(diào)查,調(diào)查結(jié)果按0≤t<2,2≤t<3,3≤t<4,t≥4分為四個(gè)等級(jí),并分別用A、B、C、D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中給出的信息解答下列問(wèn)題:
(1)求出x的值,并將不完整的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若該校共有學(xué)生2500人,試估計(jì)每周課外閱讀時(shí)間量滿足2≤t<4的人數(shù);
(3)若本次調(diào)查活動(dòng)中,九年級(jí)(1)班的兩個(gè)學(xué)習(xí)小組分別有3人和2人每周閱讀時(shí)間量都在4小時(shí)以上,現(xiàn)從這5人中任選2人參加學(xué)校組織的知識(shí)搶答賽,求選出的2人來(lái)自不同小組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,E、F是ABCD的對(duì)角線AC上的兩點(diǎn),AF=CE.
求證:(1)△ABE≌△CDF;
(2)ED∥BF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com