【題目】某工廠為了擴(kuò)大生產(chǎn),決定購買6臺(tái)機(jī)器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機(jī)器可供選擇,其中甲型機(jī)器每日生產(chǎn)零件106個(gè),乙型機(jī)器每日生產(chǎn)零件60個(gè),經(jīng)調(diào)查,購買3臺(tái)甲型機(jī)器和2臺(tái)乙機(jī)器共需31萬元,購買一臺(tái)甲型機(jī)器比購買一臺(tái)乙型機(jī)器多2萬元.
(1)求甲、乙兩種機(jī)器每臺(tái)各多少萬元?
(2)如果工廠購買機(jī)器的預(yù)算資金不超過34萬元,那么該工廠有幾種購買方案?
(3)在(2)的條件下,如果該工廠購進(jìn)的6臺(tái)機(jī)器的日產(chǎn)量能力不能低于380個(gè),那么為了節(jié)約資金,應(yīng)選擇那種方案?
【答案】(1)甲種機(jī)器每臺(tái)7萬元,乙種機(jī)器每臺(tái)5萬元;(2)有三種購買方案:
①購買甲種機(jī)器0臺(tái),乙種機(jī)器6臺(tái),②購買甲種機(jī)器1臺(tái),乙種機(jī)器5臺(tái),③購買甲種機(jī)器2臺(tái),乙種機(jī)器4臺(tái);(3)②購買甲種機(jī)器1臺(tái),乙種機(jī)器5臺(tái)該方案符合要求.
【解析】
(1)設(shè)甲種機(jī)器每臺(tái)x萬元,乙種機(jī)器每臺(tái)y萬元,列出方程組即可解決問題.
(2)設(shè)購買甲種機(jī)器a臺(tái),乙種機(jī)器(6-a)臺(tái),構(gòu)建不等式解決問題.
(3)分別求出各種方案的費(fèi)用,日產(chǎn)量能力即可解決問題.
解:(1)設(shè)甲種機(jī)器每臺(tái)x萬元,乙種機(jī)器每臺(tái)y萬元,
由題意得:,解得:,
答:甲種機(jī)器每臺(tái)7萬元,乙種機(jī)器每臺(tái)5萬元;
(2)設(shè)購買甲種機(jī)器a臺(tái),乙種機(jī)器(6-a)臺(tái),
由題意7a+5(6-a)≤34,
解得a≤2,
∵a是整數(shù),a≥0
∴a=0或1或2,
∴有三種購買方案:
①方案購買甲種機(jī)器0臺(tái),乙種機(jī)器6臺(tái),
②方案購買甲種機(jī)器1臺(tái),乙種機(jī)器5臺(tái),
③方案購買甲種機(jī)器2臺(tái),乙種機(jī)器4臺(tái);
(3)①方案費(fèi)用6×5=30萬元,日產(chǎn)量能力360個(gè),
②方案費(fèi)用7+5×5=32萬元,日產(chǎn)量能力406個(gè),
③方案費(fèi)用為2×7+4×5=34萬元,日產(chǎn)量能力452個(gè),
綜上所述,②方案購買甲種機(jī)器1臺(tái),乙種機(jī)器5臺(tái)滿足條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,AB=AC=20cm,BD⊥AC于D,且BD=16cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC方向勻速運(yùn)動(dòng),速度為4cm/s;同時(shí)點(diǎn)P由B點(diǎn)出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為lcm/s,過點(diǎn)P的動(dòng)直線PQ∥AC,交BC于點(diǎn)Q,連結(jié)PM,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<5),解答下列問題:
(1)線段AD=___cm;
(2)求證:PB=PQ;
(3)當(dāng)t為何值時(shí),以P、Q、D、M為頂點(diǎn)的四邊形為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是CD邊上一動(dòng)點(diǎn),DF⊥BE交BE的延長線于F.
(1)如圖(1),若BE平分∠DBC時(shí),
①直接寫出∠FDC的度數(shù);
②延長DF交BC的延長線于點(diǎn)H,補(bǔ)全圖形,探究BE與DF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖(2),過點(diǎn)C作CG⊥BE于點(diǎn)G,猜想線段BF,CG,DF之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,在△ABC中,∠C=60°,∠A=40°.
(1)用尺規(guī)作圖作AB的垂直平分線,交AC于點(diǎn)D,交AB于點(diǎn)E(保留作圖痕跡,不要求寫作法和證明);
(2)求證:BD平分∠CBA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中A(a,0),B(0,b),且a,b滿足.
(1) (2)
(1)A、B坐標(biāo)分別為A( ) 、B( ).
(2)P為x軸上一點(diǎn),C為AB中點(diǎn),∠APC=∠PBO,求AP的長.
(3)如圖2,點(diǎn)E為第一象限一點(diǎn),AE=AB,以AE為斜邊構(gòu)造等腰直角△AFE,連BE,連接OF并延長交BE于點(diǎn)G,求證:BG=EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線PQ∥MN,點(diǎn)A在直線PQ上,點(diǎn)C、D在直線MN上,連接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE與CE相交于點(diǎn)E.
(1)若將圖1中的線段AD沿MN向右平移到A1D1如圖2所示位置,此時(shí)A1E平分∠AA1D1,CE平分∠ACD1,A1E與CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度數(shù).
(2)若將圖1中的線段AD沿MN向左平移到A1D1如圖3所示位置,其他條件與(1)相同,求此時(shí)∠A1EC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一個(gè)長為2m,寬為2n的長方形紙片,將長方形紙片沿圖中虛線剪成四個(gè)形狀和大小完全相同的小長方形,然后拼成圖②所示的一個(gè)大正方形。
(1)用兩種不同的方法表示圖②中小正方形(陰影部分)的面積:
方法一: ;
方法二: .
(2)(m+n),(mn) ,mn這三個(gè)代數(shù)式之間的等量關(guān)系為___
(3)應(yīng)用(2)中發(fā)現(xiàn)的關(guān)系式解決問題:若x+y=9,xy=14,求xy的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像,有下列4個(gè)結(jié)論:①>0;②;③; ④其中正確的結(jié)論有_______.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果生產(chǎn)基地,某天安排30名工人采摘枇杷或草莓(每名工人只能做其中一項(xiàng)工作),并且每人每天摘0.4噸枇杷或0.3噸草莓,當(dāng)天的枇杷售價(jià)每噸2000元,草莓售價(jià)每噸3000元,設(shè)安排其中x名工人采摘枇杷,兩種水果當(dāng)天全部售出,銷售總額達(dá)y元.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若要求當(dāng)天采摘枇杷的數(shù)量不少于草莓的數(shù)量,求銷售總額的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com