【題目】如圖,拋物線y=﹣x2﹣x+4與x軸交于A,B兩點(A在B的左側),與y軸交于點C.
(1)求點A,點B的坐標;
(2)P為第二象限拋物線上的一個動點,求△ACP面積的最大值.
【答案】(1) A(﹣4,0),B(2,0);(2)△ACP最大面積是4.
【解析】
(1)令y=0,得到關于x 的一元二次方程﹣x2﹣x+4=0,解此方程即可求得結果;
(2)先求出直線AC解析式,再作PD⊥AO交AC于D,設P(t,﹣t2﹣t+4),可表示出D點坐標,于是線段PD可用含t的代數式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP關于t 的函數關系式,繼而可求出△ACP面積的最大值.
(1)解:設y=0,則0=﹣x2﹣x+4
∴x1=﹣4,x2=2
∴A(﹣4,0),B(2,0)
(2)作PD⊥AO交AC于D
設AC解析式y=kx+b
∴
解得:
∴AC解析式為y=x+4.
設P(t,﹣t2﹣t+4)則D(t,t+4)
∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2
∴S△ACP=PD×4=﹣(t+2)2+4
∴當t=﹣2時,△ACP最大面積4.
科目:初中數學 來源: 題型:
【題目】如圖,已知∠AOB=60°,半徑為2的⊙M與邊OA、OB相切,若將⊙M水平向左平移,當⊙M與邊OA相交時,設交點為E和F,且EF=6,則平移的距離為( 。
A. 2 B. 2或6 C. 4或6 D. 1或5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線與二次函數的圖像交于點A、O,(O是坐標原點),點P為二次函數圖像的頂點,OA=,AP的中點為B.
(1)求二次函數的解析式;
(2)求線段OB的長;
(3)若射線OB上存在點Q,使得△AOQ與△AOP相似,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.
(1)求證:四邊形ENFM為平行四邊形;
(2)當四邊形ENFM為矩形時,求證:BE=BN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某農場要建一個長方形的養(yǎng)雞場,雞場的一邊靠長為18m的墻,另三邊用木欄圍城,木欄長為32m.
(1)雞場的面積能圍成120m2嗎?
(2)雞場的面積能圍成130m2嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在學習反比例函數的圖象時,他的老師要求同學們根據“探索一次函數y1=x+1的圖象”的基本步驟,在紙上逐步探索函數y2=的圖象,并且在黑板上寫出4個點的坐標:A(,),B(1,2),C(1,),D(﹣2,﹣1).
(1)在A、B、C、D四個點中,任取一個點,這個點既在直線y1=x+1又在雙曲線y2=上的概率是多少?
(2)小明從A、B、C、D四個點中任取兩個點進行描點,求兩點都落在雙曲線y2=上的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com