【題目】如圖1是一手機(jī)支架,其中AB=8cm,底座CD=1cm,當(dāng)點(diǎn)A正好落在桌面上時如圖2所示,∠ABC=80°,∠A=60°.
(1)求點(diǎn)B到桌面AD的距離;
(2)求BC的長.(結(jié)果精確到0.1cm;參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,≈1.73)
【答案】(1)4;(2)9.3cm
【解析】
(1)過點(diǎn)B作BE⊥AD于點(diǎn)E,根據(jù)含30度角的直角三角形的性質(zhì)即可求出答案;
(2)延長CF交BE于點(diǎn)F,根據(jù)銳角三角函數(shù)的定義即可求出答案.
解:(1)過點(diǎn)B作BE⊥AD于點(diǎn)E,
∴∠AEB=90°,
∵∠A=60°,AB=8,
∴BE=4,
∴點(diǎn)B到桌面AD的距離是4;
(2)延長CF交BE于點(diǎn)F,
∴∠BFC=90°
∵∠A=60°,∠ABC=80°,
∴∠CBF=50°,
由題意可知:BF=4﹣1,
∵cos50°=,
∴BC=≈9.3cm,
∴BC的長度為9.3cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象和都在第一象限內(nèi),,軸,且,點(diǎn)的坐標(biāo)為.
(1)若反比例函數(shù)的圖象經(jīng)過點(diǎn)B,求此反比例函數(shù)的解析式;
(2)若將向下平移(m>0)個單位長度,,兩點(diǎn)的對應(yīng)點(diǎn)同時落在反比例函數(shù)圖象上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形在平面直角坐標(biāo)系中的位置如圖所示,,,把菱形繞點(diǎn)逆時針旋轉(zhuǎn),使點(diǎn)落在軸上,則旋轉(zhuǎn)后點(diǎn)的對應(yīng)點(diǎn)的坐標(biāo)為().
A.B.
C.和D.和
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線x=1是二次函數(shù)y=ax2+bx+c(a,b,c是實(shí)數(shù),且a≠0)的圖象的對稱軸,點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)為其圖象上的兩點(diǎn),且y1<y2,( 。
A.若x1<x2,則x1+x2﹣2<0B.若x1<x2,則x1+x2﹣2>0
C.若x1>x2,則a(x1+x2-2)>0D.若x1>x2,則a(x1+x2-2)<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等邊△AOB放在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B在第一象限,將等邊△AOB繞點(diǎn)O順時針旋轉(zhuǎn)180°得到△A′OB′,則點(diǎn)B的對應(yīng)點(diǎn)B′的坐標(biāo)是( 。
A.B.C.D.(0,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D為BC的中點(diǎn),點(diǎn)E在AB上,AD,CE交于點(diǎn)F,AE=EF=4,FC=9,則cos∠ACB的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx-3(a≠0)經(jīng)過點(diǎn)(-2,-3).
(1)用a表示b.
(2)當(dāng)x≥-2時,y≤-2,求拋物線的解析式.
(3)無論a取何值,若一次函數(shù)y2=a2x+m總經(jīng)過y的頂點(diǎn),求證:m≥.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品每天的銷售利潤y(元)與銷售單價x(元)之間滿足關(guān)系:y=ax2+bx-75.其圖象如圖所示.
⑴a= ;b= ;
⑵銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?
⑶由圖象可知,銷售單價x在 時,該種商品每天的銷售利潤不低于16元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實(shí)數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論: ①方程x2+2x﹣8=0是倍根方程;
②若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;
③若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點(diǎn)的坐標(biāo)是(2,0)和(4,0);
④若點(diǎn)(m,n)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.
上述結(jié)論中正確的有( )
A. ①② B. ③④ C. ②③ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com