如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,4),則點(diǎn)B2014的橫坐標(biāo)為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,單價40元.經(jīng)市場預(yù)測,銷售定價為52元時,可售出180個,定價每增加1元,銷售量凈減少10個;定價每減少1元,銷售量凈增加10個.因受庫存的影響,每批次進(jìn)貨個數(shù)不得超過180個,商店若將準(zhǔn)備獲利2000元,則應(yīng)進(jìn)貨多少個?定價為多少元?
分析:利用銷售利潤=售價﹣進(jìn)價,根據(jù)題中條件可以列出利潤與x的關(guān)系式,求出即可.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖①是一個直角三角形紙片,∠A=30°,BC=4cm,將其折疊,使點(diǎn)C落在斜邊上的點(diǎn)C′處,折痕為BD,如圖②,再將②沿DE折疊,使點(diǎn)A落在DC′的延長線上的點(diǎn)A′處,如圖③,則折痕DE的長為( )
A.cm B. 2cm C. 2cm D. 3cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,半徑為2cm,圓心角為90°的扇形OAB中,分別以O(shè)A、OB為直徑作半圓,則圖中陰影部分的面積為( 。
A.(﹣1)cm2 B. (+1)cm2 C. 1cm2 D. cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣1,4),且與直線y=﹣x+1相交于A、B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(﹣3,0).
(1)求二次函數(shù)的表達(dá)式;
(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)N在AB上方),過N作NP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;
(3)在(2)的條件下,點(diǎn)N在何位置時,BM與NC相互垂直平分?并求出所有滿足條件的N點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)P在以AB為直徑的半圓內(nèi),連AP、BP,并延長分別交半圓于點(diǎn)C、D,連接AD、BC并延長交于點(diǎn)F,作直線PF,下列說法正確的是:
①AC垂直平分BF;②AC平分∠BAF;③PF⊥AB;④BD⊥AF.
A.①② B.①④
C.②④ D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在一次科技活動中,小明進(jìn)行了模擬雷達(dá)雪描實(shí)驗(yàn).如圖,表盤是△ABC,其中AB=AC,∠BAC=120°,在點(diǎn)A處有一束紅外光線AP,從AB開始,繞點(diǎn)A逆時針勻速旋轉(zhuǎn),每秒鐘旋轉(zhuǎn)15°,到達(dá)AC后立即以相同的旋轉(zhuǎn)速度返回A、B,到達(dá)后立即重復(fù)上述旋轉(zhuǎn)過程.小明通過實(shí)驗(yàn)發(fā)現(xiàn),光線從AB處開始旋轉(zhuǎn)計時,旋轉(zhuǎn)1秒, 時光線AP交BC于點(diǎn)M,BM的長為()cm.
(1)求AB的長;
(2)從AB處旋轉(zhuǎn)開始計時,若旋轉(zhuǎn)6秒,此時AP與BC邊交點(diǎn)在什么位置?若旋轉(zhuǎn)2014秒,此時AP與BC邊交點(diǎn)在什么位置?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com