【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1.在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′.
(1)在給定方格紙中畫(huà)出平移后的△A′B′C′;
(2)畫(huà)出AB邊上的中線(xiàn)CD和BC邊上的高線(xiàn)AE;
(3) 求四邊形ACBB′的面積
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)27
【解析】
(1)根據(jù)圖形平移的性質(zhì)畫(huà)出△A′B′C′即可;
(2)取線(xiàn)段AB的中點(diǎn)D,連接CD,過(guò)點(diǎn)A作AE⊥BC的延長(zhǎng)線(xiàn)與點(diǎn)E即可;
(3)根據(jù)S四邊形ACBB′=S梯形AFGB+S△ABC-S△BGB′-S△AFB′即可得出結(jié)論.
(1)如圖所示;
(2)如圖所示;
(3) S =S +S S S
= (7+3)×6+×4×4×1×7×3×5
=30+8
=27,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙P經(jīng)過(guò)x軸上一點(diǎn)C,與y軸分別相交于A、B兩點(diǎn),連接AP并延長(zhǎng)分別交⊙P、x軸于點(diǎn)D、點(diǎn)E,連接DC并延長(zhǎng)交y軸于點(diǎn)F.若點(diǎn)F的坐標(biāo)為,點(diǎn)D的坐標(biāo)為.
(1)求證:DC=FC;
(2)判斷⊙P與x軸的位置關(guān)系,并說(shuō)明理由;
(3)求⊙P的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點(diǎn)E,延長(zhǎng)BC至點(diǎn)F使CF=BE,連結(jié)AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中, , ,過(guò)點(diǎn)作垂直直線(xiàn)于點(diǎn), ,再過(guò)點(diǎn)作垂直于直線(xiàn)于點(diǎn),則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】彈簧掛上適當(dāng)?shù)闹匚锖髸?huì)按一定的規(guī)律伸長(zhǎng),已知一彈簧的長(zhǎng)度(cm)與所掛物體的質(zhì)量(kg)之間的關(guān)系如下表:
所掛物體的質(zhì)量(kg) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
彈簧的長(zhǎng)度(cm) | 15 | 15.6 | 16.2 | 16.8 | 17.4 | 18 | 18.6 |
(1)上表反映了哪兩個(gè)變量之間的關(guān)系?哪個(gè)是自變量?
(2)寫(xiě)出與之間的關(guān)系式;
(3)當(dāng)物體的質(zhì)量逐漸增加時(shí),彈簧的長(zhǎng)度怎樣變化?
(4)當(dāng)所掛物體的質(zhì)量為11.5kg時(shí),求彈簧的長(zhǎng)度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“你今天光盤(pán)了嗎?”這是國(guó)家倡導(dǎo)厲行節(jié)約,反對(duì)浪費(fèi)以來(lái)的時(shí)尚流行語(yǔ),某校團(tuán)委隨機(jī)抽取部分了學(xué)生,對(duì)他們是否了解關(guān)于“光盤(pán)行動(dòng)”的情況進(jìn)行調(diào)查,調(diào)查結(jié)果有三種:A、了解很多;B、了解一點(diǎn);C、不了解.團(tuán)委根據(jù)調(diào)查的數(shù)據(jù)進(jìn)行整理,繪制了尚不完整的統(tǒng)計(jì)圖如下,圖1中C區(qū)域的圓心角為36°,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的相關(guān)的信息,解答下列問(wèn)題:
(1)求本次活動(dòng)共調(diào)查了多少名學(xué)生?
(2)請(qǐng)補(bǔ)全圖2,并求出圖1中,B區(qū)域的圓心角度數(shù);
(3)若該校有2400名學(xué)生,請(qǐng)估算該校不是了解很多的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)你用實(shí)例解釋下列代數(shù)式的意義:
(1)5a+10b;
(2)3x;
(3);
(4);
(5)(1-8%)x;
(6);
(7);
(8);
(9).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正方形ABCD(如圖1)作如下劃分:第1次劃分:分別連接正方形ABCD對(duì)邊的中點(diǎn)(如圖2),得線(xiàn)段HF和EG,它們交于點(diǎn)M,此時(shí)圖2中共有5個(gè)正方形;第2次劃分:將圖2左上角正方形AEMH按上述方法再作劃分,得圖3,則圖3中共有_________個(gè)正方形;若每次都把左上角的正方形依次劃分下去,則第100次劃分后,圖中共有_______個(gè)正方形;繼續(xù)劃分下去,能否將正方形ABCD劃分成有2011個(gè)正方形的圖形?需說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖(1),如果AB∥CD∥EF. 那么∠BAC+∠ACE+∠CEF=360°.
老師要求學(xué)生在完成這道教材上的題目后,嘗試對(duì)圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小華首先完成了對(duì)這道題的證明,在證明過(guò)程中她用到了平行線(xiàn)的一條性質(zhì),小華用到的平行線(xiàn)性質(zhì)可能是______________.
(2)接下來(lái),小華用《幾何畫(huà)板》對(duì)圖形進(jìn)行了變式,她先畫(huà)了兩條平行線(xiàn)AB,EF,然后在平行線(xiàn)間畫(huà)了一點(diǎn)C,連接AC,EC后,用鼠標(biāo)拖動(dòng)點(diǎn)C,分別得到了圖(2)(3)(4),小華發(fā)現(xiàn)圖(3)正是上面題目的原型,于是她由上題的結(jié)論猜想到圖(2)和(4)中的∠BAC,∠ACE與∠CEF之間也可能存在著某種數(shù)量關(guān)系.然后,她利用《幾何畫(huà)板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.
請(qǐng)你在小華操作探究的基礎(chǔ)上,繼續(xù)完成下面的問(wèn)題:
①猜想:圖(2)中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: .
②補(bǔ)全圖(4),并直接寫(xiě)出圖中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: . (3)小華繼續(xù)探究:如圖(5),若直線(xiàn)AB與直線(xiàn)EF不平行,點(diǎn)G,H分別在直線(xiàn)AB、直線(xiàn)EF上,點(diǎn)C在兩直線(xiàn)外,連接CG,CH,GH,且GH同時(shí)平分∠BGC和∠FHC,請(qǐng)?zhí)剿鳌?/span>AGC,∠GCH與∠CHE之間的數(shù)量關(guān)系?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com