【題目】已知點P是線段MN上一動點,分別以PMPN為一邊,在MN的同側(cè)作△APM,△BPN,并連接BM,AN

(Ⅰ)如圖1,當(dāng)PMAP,PNBP且∠APM=∠BPN90°時,試猜想BMAN之間的數(shù)量關(guān)系與位置關(guān)系,并證明你的猜想;

(Ⅱ)如圖2,當(dāng)△APM,△BPN都是等邊三角形時,(Ⅰ)中BMAN之間的數(shù)量關(guān)系是否仍然成立?若成立,請證明你的結(jié)論;若不成立,試說明理由.

(Ⅲ)在(Ⅱ)的條件下,連接AB得到圖3,當(dāng)PN2PM時,求∠PAB度數(shù).

【答案】(1)BMAN,BMAN.(2)結(jié)論成立.(3)90°

【解析】

(1)根據(jù)已知條件可證MBP≌△ANP,得出MBAN,∠PAN=∠PMB,再延長MBAN于點C,得出,因此有BMAN;

(2)根據(jù)所給條件可證MPB≌△APN,得出結(jié)論BMAN

(3)PB的中點C,連接AC,AB,通過已知條件推出APC為等邊三角形,∠PAC=∠PCA60°,再由CACB,進(jìn)一步得出∠PAB的度數(shù).

解:(Ⅰ)結(jié)論:BMANBMAN

理由:如圖1中,

MPAP,∠APM=∠BPN90°,PBPN,

∴△MBP≌△ANPSAS),

MBAN

延長MBAN于點C

∵△MBP≌△ANP,

∴∠PAN=∠PMB

∵∠PAN+PNA90°,

∴∠PMB+PNA90°

∴∠MCN180°﹣∠PMB﹣∠PNA90°,

BMAN

(Ⅱ)結(jié)論成立

理由:如圖2中,

∵△APM,△BPN,都是等邊三角形

∴∠APM=∠BPN60°

∴∠MPB=∠APN120°,

又∵PMPAPBPN,

∴△MPB≌△APNSAS

MBAN

(Ⅲ)如圖3中,取PB的中點C,連接AC,AB

∵△APM,△PBN都是等邊三角形

∴∠APM=∠BPN60°PBPN

∵點CPB的中點,且PN2PM,

∴2PC=2PA=2PMPBPN

∵∠APC60°,

∴△APC為等邊三角形,

∴∠PAC=∠PCA60°,

又∵CACB

∴∠CAB=∠ABC30°,

∴∠PAB=∠PAC+CAB90°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+cx軸交于點A3,0),與y軸交于點B,拋物線y=x2+bx+c經(jīng)過點A,B

1)求點B的坐標(biāo)和拋物線的解析式;

2Mm,0)為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點P,N

①點M在線段OA上運(yùn)動,若以BP,N為頂點的三角形與APM相似,求點M的坐標(biāo);

②點Mx軸上自由運(yùn)動,若三個點MP,N中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱MP,N三點為共諧點.請直接寫出使得M,P,N三點成為共諧點m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸相交于、兩點(其中為坐標(biāo)原點),過點作直線軸于點,交拋物線于點,點關(guān)于拋物線對稱軸的對稱點為(其中不重合),連接軸于點,連接

(1)時,求拋物線的解析式和的長;

如圖時,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點H,點M是弧CBD 上任意一點,AH=2,CH=4.

(1)求⊙O 的半徑r 的長度;

(2)求sin∠CMD;

(3)直線BM交直線CD于點E,直線MH交⊙O 于點 N,連接BNCE于點 F,求HEHF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圖1和圖2中的四邊形ABCD都是正方形,△ABE的邊長分別為a,bc,請你從圖1到圖2,圖2到圖3的變換過程中,利用幾何圖形的面積關(guān)系,求a,b,c之間的等量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC,AD的中點,連接AE、CF.

(1)求證:四邊形AECF是矩形;

(2)若AB=2,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AC=BC,在ABC外側(cè)作直線CP,點A關(guān)于直線CP的對稱點為D,連接AD,BD,其中BD交直線CP于點E.

(1)如圖1,ACP=15°.

①依題意補(bǔ)全圖形;

②求∠CBD的度數(shù);

(2)如圖2,若45°<ACP<90°,直接用等式表示線段AC,DE,BE之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點坐標(biāo)為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.

(1)求二次函數(shù)y=ax2+bx+c的表達(dá)式;

(2)過點AAC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點PAC上方),作PD平行于y軸交AB于點D,問當(dāng)點P在何位置時,四邊形APCD的面積最大?并求出最大面積;

(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,a、b、c分別是A、B、C的對邊,下列條件不能判斷ABC是直角三角形的是( )

A.AB=C

B.ABC=3:4:5

C.(b+c)(b﹣c)=a2

D.a(chǎn)=7,b=24,c=25

查看答案和解析>>

同步練習(xí)冊答案