【題目】關(guān)于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求實(shí)數(shù)k的取值范圍;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1、x2 , 存不存在這樣的實(shí)數(shù)k,使得|x1|﹣|x2|= ?若存在,求出這樣的k值;若不存在,說明理由.

【答案】
(1)解:∵方程有兩個(gè)不相等的實(shí)數(shù)根,

∴△=[﹣(2k﹣1)]2﹣4(k2﹣2k+3)=4k﹣11>0,

解得:k> ;


(2)解:存在,

∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,

∴將|x1|﹣|x2|= 兩邊平方可得x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,

代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,

解得:4k﹣11=5,

解得:k=4.


【解析】(1)一元二次方程有兩個(gè)不相等的實(shí)數(shù)根的條件是判別式>0,構(gòu)建關(guān)于k的不等式,解出不等式即可;(2)先由兩根之積x1x2=k2﹣2k+3=(k﹣1)2+2>0,判斷出二者同號(hào), 可去絕對值:同正,|x1|﹣|x2|=x1-x2,同負(fù),|x1|﹣|x2|=-(x1-x2),然后兩邊同時(shí)平方,即可求出k.
【考點(diǎn)精析】關(guān)于本題考查的求根公式和根與系數(shù)的關(guān)系,需要了解根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[知識(shí)生成]通常,用兩種不同的方法計(jì)算同一個(gè)圖形的面積,可以得到一個(gè)恒等式.例如:如圖①是一個(gè)長為,寬為的長方形,沿圖中虛線用剪刀均分成四個(gè)小長方形,然后按圖②的形狀拼成一個(gè)正方形.請解答下列問題:

1)圖②中陰影部分的正方形的邊長是________________;

2)請用兩種不同的方法求圖②中陰影部分的面積:

方法1:________________________;方法2_______________________;

3)觀察圖②,請你寫出、、之間的等量關(guān)系是__________;

4)根據(jù)(3)中的等量關(guān)系解決如下問題:若,,=________;

[知識(shí)遷移]

類似地,用兩種不同的方法計(jì)算同一幾何體的體積,也可以得到一個(gè)恒等式.

5)根據(jù)圖③,寫出一個(gè)代數(shù)恒等式:____________________________;

6)已知,,利用上面的規(guī)律求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=2x+4

(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象;

2)求圖象與x軸的交點(diǎn)A的坐標(biāo),與y軸交點(diǎn)B的坐標(biāo);

(3)在(2)的條件下,求出△AOB的面積;

(4)利用圖象直接寫出:當(dāng)y<0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:,OBOC、OM、ON內(nèi)的射線.

如圖1,若OM平分,ON平分當(dāng)OB繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),則的大小為______;

如圖2,若OM平分,ON平分當(dāng)繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),求的大。

的條件下,若,當(dāng)內(nèi)繞著點(diǎn)O秒的速度逆時(shí)針旋轉(zhuǎn)t秒時(shí),中的一個(gè)角的度數(shù)恰好是另一個(gè)角的度數(shù)的兩倍,求t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小強(qiáng)和小華共同站在路燈下,小強(qiáng)的身高EF=1.8m,小華的身高M(jìn)N=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算: + ﹣6sin45°+(﹣1)2009

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:OB、OC、OM、ON內(nèi)的射線.

如圖1,若OM平分ON平分當(dāng)OB繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),則的大小為______;

如圖2,若OM平分,ON平分當(dāng)繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),求的大;

的條件下,若,當(dāng)內(nèi)繞著點(diǎn)O秒的速度逆時(shí)針旋轉(zhuǎn)t秒時(shí),中的一個(gè)角的度數(shù)恰好是另一個(gè)角的度數(shù)的兩倍,求t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,正方形ABCD的邊長為6 cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在正方形的邊上沿A→B→C→D運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s),三角形APD的面積為S(cm2),S與t的函數(shù)圖象如圖②所示,請回答下列問題:

(1)點(diǎn)P在AB上運(yùn)動(dòng)的時(shí)間為________s,在CD上運(yùn)動(dòng)的速度為________cm/s,三角形APD的面積S的最大值為________cm2;

(2)求出點(diǎn)P在CD上運(yùn)動(dòng)時(shí)S與t之間的函數(shù)表達(dá)式;

(3)當(dāng)t為何值時(shí),三角形APD的面積為10 cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).

①請畫出△ABC關(guān)于x軸對稱的△A1B1C1 , 并寫出點(diǎn)A1的坐標(biāo);
②請畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2 , 并寫出點(diǎn)A2、C2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案