【題目】在矩形ABCD中,AB2,∠ACB30°,將矩形ABCD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),得到矩形ABCD,記旋轉(zhuǎn)角為α0α90°).

I)如圖①,當(dāng)B'C'過點(diǎn)D時(shí),求△ADC'的面積S的值;

)如圖②,當(dāng)點(diǎn)B的對應(yīng)點(diǎn)B'落在AC上時(shí),在BC上取點(diǎn)E,使B'EAB

①求∠EBB'的大;

②求BE的長(直接寫出結(jié)果即可).

【答案】SADC22;()①∠BEB15°;②BE.

【解析】

)如圖中,解直角三角形求出DB,根據(jù)SADCSABCSADB,計(jì)算即可.

證明ABB是等邊三角形,利用圓周角定理即可解決問題.

如圖中,作EHBBBBH.解直角三角形求出EH,BH,利用勾股定理即可解決問題.

解:()如圖中,

RtABC中,∵∠B90°,AB2ACB30°,

AC2AB4,,

RtADB中,

如圖中,連接AE

ABAB,BAB60°

∴△ABB是等邊三角形,

BABBBE,ABB60°

點(diǎn)BABE的外接圓的圓心,

,

∵∠ABE90°,BABE

∴∠AEB45°,

∴∠BEB45°30°15°

如圖中,作EHBBBBH

BEBB,

∴∠BBEBEB15°,

∴∠EBH30°,

EHEB1,HB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°.點(diǎn)OAB的中點(diǎn),邊AC6,將邊長足夠大的三角板的直角頂點(diǎn)放在點(diǎn)O處,將三角板繞點(diǎn)0旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點(diǎn)為點(diǎn)E,另?xiàng)l直角邊與BC相交,交點(diǎn)為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CDCE的長度之和為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年10月23日,港珠澳大橋正式開通,成為橫亙在伶仃洋上的一道靚麗的風(fēng)景.大橋主體工程隧道的東、西兩端各設(shè)置了一個(gè)海中人工島,來銜接橋梁和海底隧道,西人工島上的A點(diǎn)和東人工島上的B點(diǎn)間的距離約為5.6千米,點(diǎn)C是與西人工島相連的大橋上的一點(diǎn),A,B,C在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達(dá)P點(diǎn)時(shí)觀測兩個(gè)人工島,分別測得與觀光船航向的夾角∠DPA=18°,∠DPB=53°,求此時(shí)觀光船到大橋AC段的距離的長

參考數(shù)據(jù):°,°,°,°,°°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來網(wǎng)約車十分流行,初三某班學(xué)生對美團(tuán)滴滴兩家網(wǎng)約車公司各10名司機(jī)月收入進(jìn)行了一項(xiàng)抽樣調(diào)查,司機(jī)月收入(單位:千元)如圖所示:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

1)完成表格填空;

2)若從兩家公司中選擇一家做網(wǎng)約車司機(jī),你會選哪家公司,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,已知C90°,B50°,點(diǎn)D在邊BC上,BD2CD(圖4).把ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m0m180)度后,如果點(diǎn)B恰好落在初始RtABC的邊上,那么m_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣x﹣6.

(1)畫出函數(shù)的圖象;

(2)觀察圖象,指出方程x2﹣x﹣6=0的解及不等式x2﹣x﹣6>0解集;

(3)求二次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)所構(gòu)成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中∠ACB90°、∠CAB30°ABD 是等邊三角形將四邊形 ACBD 折疊,使點(diǎn) D 與點(diǎn) C 重合,HK 為折痕,則cosACH 的值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,平分,交于點(diǎn),交于點(diǎn),,,則的長為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系xOy直線軸于點(diǎn)、交軸于點(diǎn),

1)求直線的函數(shù)表達(dá)式;

2)設(shè)點(diǎn)軸上的一點(diǎn)

①在坐標(biāo)平面內(nèi)是否存在點(diǎn),使以、、、為頂點(diǎn)的四邊形是菱形?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

②若是線段的中點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,點(diǎn)在直線上,當(dāng)為等邊三角形時(shí),求直線的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案