【題目】如圖,平面直角坐標(biāo)系中,平行四邊形ABCD的中心E的坐標(biāo)為(2,0),若點A的坐標(biāo)為(-2,1),則點C的坐標(biāo)為( )

A. (4,-1)B. (6,-1)C. (8,-1)D. (6,-2)

【答案】B

【解析】

首先連接AC,過點AAGx軸于點G,過點CCHx軸于點HE是平行四邊形ABCD的中心,即可得AC過點E,易證得AEG≌△CEH,繼而求得答案.

連接AC,過點AAGx軸于點G,過點CCHx軸于點H,

E是平行四邊形ABCD的中心,

AC過點E,

AE=CE

AEGCEH中,

∴△AEG≌△CEHAAS),

EG=EH,CH=AG

E的坐標(biāo)為(2,0),點A的坐標(biāo)為(-21),

EH=EG=4CH=AG=1,

OH=OE+EH=6,

∴點C的坐標(biāo)為:(6,-1).

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)某酒廠每天生產(chǎn)A,B兩種品牌的白酒共600瓶,AB兩種品牌的白酒每瓶的成本和利潤如下表:設(shè)每天生產(chǎn)A種品牌白酒x瓶,每天獲利y元.

1)請寫出y關(guān)于x的函數(shù)關(guān)系式;

2)如果該酒廠每天至少投入成本26400元,那么每天至少獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有大小兩種盛酒的桶,已知5個大桶加上1個小桶可以盛酒3(斛是古代的一種容量位),1個大桶加上5個小桶可以盛酒2斛。

(1)1個大桶、1個小桶分別可以盛酒多少斛?

(2)盛酒16斛,需要大桶、小桶各多少?(寫出兩種方案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O.MAD中點,連接CMBD于點N,且ON=1.

(1)求BD的長;

(2)若DCN的面積為2,求四邊形ABNM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮和小芳都想?yún)⒓訉W(xué)校杜團組織的暑假實踐活動,但只有一個名額,小亮提議用如下的辦法決定誰去等加活動:將一個轉(zhuǎn)盤9等分,分別標(biāo)上1至9九個號碼,隨意轉(zhuǎn)動轉(zhuǎn)盤,

若轉(zhuǎn)到2的倍數(shù),小亮去參加活動;轉(zhuǎn)到3的倍數(shù),小芳去參加活動;轉(zhuǎn)到其它號碼則重新特動轉(zhuǎn)盤.

(1)轉(zhuǎn)盤轉(zhuǎn)到2的倍數(shù)的概率是多少?

(2)你認為這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過DDOAB,垂足為O,點B′在邊AB上,且與點B關(guān)于直線DO對稱,連接DB′,AD

1)求證:DOB∽△ACB

2)若AD平分∠CAB,求線段BD的長;

3)當(dāng)AB′D為等腰三角形時,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(1,4)、B(2,a)在函數(shù)y=(x>0)的圖象上,直線ABx軸相交于點C,ADx軸于點D.

(1)m=  

(2)求點C的坐標(biāo);

(3)在x軸上是否存在點E,使以A、B、E為頂點的三角形與ACD相似?若存在,求出點E的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《山西省新能源汽車產(chǎn)業(yè)2018年行動計劃》指出,2018年全省新能源汽車產(chǎn)能將達到30萬輛,按照十三五規(guī)劃,到2020年,全省新能源汽車產(chǎn)能將達到41萬輛,若設(shè)這兩年全省新能源汽車產(chǎn)能的平均增長率為,則根據(jù)題意可列出方程是()

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線相交于點,對于平面內(nèi)任意一點,點直線,的距離分別為,,則稱有序?qū)崝?shù)對是點距離坐標(biāo),根據(jù)上述定義,距離坐標(biāo)的點的個數(shù)是(

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習(xí)冊答案