【題目】在△ABC中,AD平分∠BAC,EBC上一點,BECDEFADABF點,交CA的延長線于PCHABAD的延長線于點H,

①求證:△APF是等腰三角形;

②猜想ABPC的大小有什么關(guān)系?證明你的猜想.

【答案】①證明見解析;②ABPC

【解析】

①根據(jù)題意作出圖形,根據(jù)兩直線平行,內(nèi)錯角相等可得∠1=∠4,同位角相等可得∠2=∠P,再根據(jù)角平分線的定義可得∠1=∠2,然后求出∠4=∠P,根據(jù)等角對等邊的性質(zhì)即可得證;

②根據(jù)兩直線平行,內(nèi)錯角相等可得∠5=∠B,再求出∠H=∠1=∠3,然后利用“AAS”證明△BEF和△CDH全等,根據(jù)全等三角形對應(yīng)邊相等可得BFCH,再求出ACCH,再根據(jù)ABAF+BF,PCAP+AC,整理即可得解.

①證明:∵EFAD,

∴∠1=∠4,∠2=∠P,

AD平分∠BAC

∴∠1=∠2,

∴∠4=∠P,

AFAP

即△APF是等腰三角形;

ABPC.理由如下:

證明:∵CHAB

∴∠5=∠B,∠H=∠1,

EFAD,

∴∠1=∠3,

∴∠H=∠3,

在△BEF和△CDH中,

,

∴△BEF≌△CDHAAS),

BFCH,

AD平分∠BAC,

∴∠1=∠2,

∴∠2=∠H,

ACCH

ACBF,

ABAF+BFPCAP+AC,

ABPC

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.

(1)設(shè)每件童裝降價x元時,每天可銷售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)

(2)每件童裝降價多少元時,平均每天贏利1200元.

(3)要想平均每天贏利2000元,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學興趣小組的活動中,小明進行數(shù)學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當點B恰好落在線段DG上時,請你幫他求出此時BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為4萬元,可變成本逐年增長,已知該養(yǎng)殖戶第一年的可變成本為2.6萬元,設(shè)可變成本平均每年增長的百分率為

1)用含x的代數(shù)式表示低3年的可變成本為 萬元;

2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為7.146萬元,求可變成本平均每年的增長百分率x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】郴州市正在創(chuàng)建全國文明城市,某校擬舉辦創(chuàng)文知識搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A20件,B15件,共需380元;如果購買A15件,B10件,共需280元.

(1)A、B兩種獎品每件各多少元?

(2)現(xiàn)要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理是人類最偉大的科學發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)是常數(shù),且)在同一直角坐標系中的圖象可能是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一幅長80cm,寬50cm的矩形風景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如果要使整個掛圖的面積是ycm2,設(shè)金色紙邊的寬為xcm,要求紙邊的寬度不得少于1cm,同時不得超過2cm.

(1)求出y關(guān)于x的函數(shù)解析式,并直接寫出自變量的取值范圍;

(2)此時金色紙邊的寬應(yīng)為多少cm時,這幅掛圖的面積最大?求出最大面積的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCDABBC,ABBC,ABCDAEBDEBCF.

(1)AB2CD;

①求證:BC2BF

②連CE,若DE6,CE,求EF的長;

(2)AB6,則CE的最小值為______.

查看答案和解析>>

同步練習冊答案