【題目】如圖1,已知直線的同側(cè)有兩個點、,在直線上找一點,使點到、兩點的距離之和最短的問題,可以通過軸對稱來確定,即作出其中一點關(guān)于直線的對稱點,對稱點與另一點的連線與直線的交點就是所要找的點,通過這種方法可以求解很多問題.
(1)如圖2,在平面直角坐標(biāo)系內(nèi),點的坐標(biāo)為,點的坐標(biāo)為,動點在軸上,求的最小值;
(2)如圖3,在銳角三角形中,,,的角平分線交于點,、分別是和上的動點,則的最小值為______.
(3)如圖4,,,,點,分別是射線,上的動點,則的最小值為__________.
【答案】(1)5;(2);(3)13.
【解析】
(1)作點A 關(guān)于x軸的對稱點,連接,的最小值即為的長,并構(gòu)造以為斜邊的直角三角形利用勾股定理求出長即可;
(2)作于點H,交AD與點,過點作于點,則的最小值為,由角平分線的性質(zhì)可得,則,根據(jù)直角三角形30度角的性質(zhì)結(jié)合勾股定理求得BH長即可;
(3)作點C關(guān)于OB的對稱點,作點D關(guān)于OA的對稱點, 連接分別交OA、OB于點,連接,則的最小值為的長,由對稱的性質(zhì)可得長,根據(jù)勾股定理求出長即可.
解:(1)作點A 關(guān)于x軸的對稱點,連接,的最小值即為的長,構(gòu)造以為斜邊的直角三角形
在中,由勾股定理得
即
所以的最小值為5.
(2)作于點H,交AD與點,過點作于點,則的最小值為,
平分,,
在中,
由勾股定理得
所以的最小值為.
(3)作點C關(guān)于OB的對稱點,作點D關(guān)于OA的對稱點, 連接分別交OA、OB于點,連接,則的最小值為的長.
由對稱可得OA垂直平分,OB垂直平分,
在中由勾股定理得
所以的最小值為13.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=--x+8與x軸,y軸分別交于點A,點B,點D在y軸的負(fù)半軸上,若將△DAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處.
(1)求AB的長和點C的坐標(biāo);
(2)求直線CD的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年是全面建成小康社會收官之年,某扶貧幫扶小組積極響應(yīng),對農(nóng)民實施精準(zhǔn)扶貧.某農(nóng)戶老張家種植花椒和黑木耳兩種干貨共800千克,扶貧小組通過市場調(diào)研發(fā)現(xiàn),花椒市場價60元/千克,黑木耳市場價48元/千克,老張全部售完可以收入4.2萬元.已知老張種植花椒成本需25元/千克,種植木耳成本需35元/千克,根據(jù)脫貧目標(biāo)任務(wù)要求,老張種植花椒和黑木耳的兩種干貨的純收入(銷售收入-種植成本)在2萬元以上才可以順利脫貧.請你分析一下扶貧幫扶小組是否能幫助老張順利脫貧.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強(qiáng),越來越多的人喜歡騎自行車出行,同時也給自行車商家?guī)砩虣C(jī). 某自行車行銷售型,型兩種自行車,經(jīng)統(tǒng)計,2019年此車行銷售這兩種自行車情況如下:自行車銷售總額為8萬元. 每輛型自行車的售價比每輛型自行車的售價少200元,型自行車銷售數(shù)量是自行車的1. 25倍, 自行車銷售總額比A型自行車銷售總額多.
(1)求每輛型自行車的售價多少元.
(2)若每輛型自行車進(jìn)價1400元,每輛型自行車進(jìn)價1300元,求此自行車行2019年銷售型自行車的總利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了10元.
(1)該商家購進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形的頂點的坐標(biāo)分別為,,是的中點,動點從點出發(fā),以每秒個單位長度的速度,沿著運(yùn)動,設(shè)點運(yùn)動的時間為秒().
(1)點的坐標(biāo)是______;
(2)當(dāng)點在上運(yùn)動時,點的坐標(biāo)是______(用表示);
(3)求的面積與之間的函數(shù)表達(dá)式,并寫出對應(yīng)自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一個長為2m,寬為2n的長方形,沿圖中虛線剪成四個均勻的小長方形,然后按圖(2)形狀拼成一個正方形.
(1)你認(rèn)為圖(2)中的陰影部分的正方形的邊長等于多少?
(2)觀察圖(2),你能寫出下列三個代數(shù)式之間的等量關(guān)系嗎?代數(shù)式:,,;
(3)已知:,,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com