【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過點(diǎn)B,C兩點(diǎn),且與x軸的一個(gè)交點(diǎn)為D(﹣2,0),點(diǎn)P是線段CB上的動(dòng)點(diǎn),設(shè)CP=t(0<t<10).
(1)請直接寫出B、C兩點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)過點(diǎn)P作PE⊥BC,交拋物線于點(diǎn)E,連接BE,當(dāng)t為何值時(shí),∠PBE=∠OCD?
(3)點(diǎn)Q是x軸上的動(dòng)點(diǎn),過點(diǎn)P作PM∥BQ,交CQ于點(diǎn)M,作PN∥CQ,交BQ于點(diǎn)N,當(dāng)四邊形PMQN為正方形時(shí),請求出t的值.
【答案】(1)B(10,4),C(0,4),;(2)3;(3)或 .
【解析】試題分析:(1)由拋物線的解析式可求得C點(diǎn)坐標(biāo),由矩形的性質(zhì)可求得B點(diǎn)坐標(biāo),由B、D的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;
(2)可設(shè)P(t,4),則可表示出E點(diǎn)坐標(biāo),從而可表示出PB、PE的長,由條件可證得△PBE∽△OCD,利用相似三角形的性質(zhì)可得到關(guān)于t的方程,可求得t的值;
(3)當(dāng)四邊形PMQN為正方形時(shí),則可證得△COQ∽△QAB,利用相似三角形的性質(zhì)可求得CQ的長,在Rt△BCQ中可求得BQ、CQ,則可用t分別表示出PM和PN,可得到關(guān)于t的方程,可求得t的值.
試題解析:
解:(1)在y=ax2+bx+4中,令x=0可得y=4,
∴C(0,4),
∵四邊形OABC為矩形,且A(10,0),
∴B(10,4),
把B、D坐標(biāo)代入拋物線解析式可得,
解得,
∴拋物線解析式為y=x2+x+4;
(2)由題意可設(shè)P(t,4),則E(t,t2+t+4),
∴PB=10﹣t,PE=t2+t+4﹣4=t2+t,
∵∠BPE=∠COD=90°,
當(dāng)∠PBE=∠OCD時(shí),
則△PBE∽△OCD,
∴,即BPOD=COPE,
∴2(10﹣t)=4(t2+t),解得t=3或t=10(不合題意,舍去),
∴當(dāng)t=3時(shí),∠PBE=∠OCD;
當(dāng)∠PBE=∠CDO時(shí),
則△PBE/span>∽△ODC,
∴,即BPOC=DOPE,
∴4(10﹣t)=2(t2+t),解得t=12或t=10(均不合題意,舍去)
綜上所述∴當(dāng)t=3時(shí),∠PBE=∠OCD;
(3)當(dāng)四邊形PMQN為正方形時(shí),則∠PMC=∠PNB=∠CQB=90°,PM=PN,
∴∠CQO+∠AQB=90°,
∵∠CQO+∠OCQ=90°,
∴∠OCQ=∠AQB,
∴Rt△COQ∽Rt△QAB,
∴,即OQAQ=COAB,
設(shè)OQ=m,則AQ=10﹣m,
∴m(10﹣m)=4×4,解得m=2或m=8,
①當(dāng)m=2時(shí),CQ==,BQ==,
∴sin∠BCQ==,sin∠CBQ==,
∴PM=PCsin∠PCQ=t,PN=PBsin∠CBQ=(10﹣t),
∴t =(10﹣t),解得t=,
②當(dāng)m=8時(shí),同理可求得t=,
∴當(dāng)四邊形PMQN為正方形時(shí),t的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=是反比例函數(shù).
(1)求m的值;
(2)指出該函數(shù)圖象所在的象限,在每個(gè)象限內(nèi),y隨x的增大如何變化?
(3)判斷點(diǎn)(,2)是否在這個(gè)函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,點(diǎn)M、N分別在AD,BC上,且AM=CN,MN與AC交于點(diǎn)O,連接DO,若∠BAC=28°,則∠ODC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,是中點(diǎn),在延長線上,連接相交于點(diǎn).
(1)若,求平行四邊形的面積;
(2)若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索規(guī)律,觀察下面算式,解答問題.
1+3=4=22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+7+9=25=52;
…
(1)請猜想:1+3+5+7+9+…+19=________;
(2)請猜想:1+3+5+7+9+…+(2n-1)=________;
(3)試計(jì)算:101+103+…+197+199.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢字的意識(shí),我市舉辦了首屆“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽寫50個(gè)漢字,若每正確聽寫出一個(gè)漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 6 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請結(jié)合圖表完成下列各題:
(1)求表中a的值;(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對(duì)抗練習(xí),且4名男同學(xué)每組分兩人,求小宇與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形 ABCDEF的中心與坐標(biāo)原點(diǎn)O重合,其中A(-2,0).將六邊形 ABCDEF繞原點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)2018次,每次旋轉(zhuǎn)60°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)是( ).
A. (1,) B. (,1) C. (1,) D. (-1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場欲購進(jìn)果汁飲料和碳酸飲料共60箱,兩種飲料每箱的進(jìn)價(jià)和售價(jià)如下表所示。設(shè)購進(jìn)果汁飲料x箱(x為正整數(shù)),且所購進(jìn)的兩種飲料能全部賣出,獲得的總利潤為W元(注:總利潤=總售價(jià)-總進(jìn)價(jià))。
(1)設(shè)商場購進(jìn)碳酸飲料y箱,直接寫出y與x的函數(shù)解析式;
(2)求總利潤w關(guān)于x的函數(shù)解析式;
(3)如果購進(jìn)兩種飲料的總費(fèi)用不超過2100元,那么該商場如何進(jìn)貨才能獲利最多?并求出最大利潤。
飲料 | 果汁飲料 | 碳酸飲料 |
進(jìn)價(jià)(元/箱) | 40 | 25 |
售價(jià)(元/箱) | 52 | 32 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com