【題目】菱形有一個內(nèi)角是120°,其中一條對角線長為9,則菱形的邊長為____________.

【答案】9

【解析】

如圖,根據(jù)題意得:∠BAC=120°,易得∠ABC=60°,所以△ABC為等邊三角形.如果AC=9,那么AB=9;如果BD=9,由菱形的性質(zhì)可得邊AB的長.

∵四邊形ABCD是菱形,

ADBC,∠ABD=CBD,OA=OC,OB=OD,ACBDAB=BC,

∵∠BAD=120°,

∴∠ABC=60°,

∴△ABC為等邊三角形,

如果AC=9,則AB=9

如果BD=9,

則∠ABD=30°,OB=,

OA=AB,

RtABO中,∠AOB=90°∴AB2=OA2+OB2,

AB2=(AB)2 +()2

AB=3,

綜上,菱形的邊長為93.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀:能夠成為直角三角形三條邊長的三個正整數(shù)a,b,c,稱為勾股數(shù).世界上第一次給出勾股數(shù)通解公式的是我國古代數(shù)學(xué)著作《九章算術(shù)》,其勾股數(shù)組公式為: 其中m>n>0,m,n是互質(zhì)的奇數(shù).

應(yīng)用:當n=1時,求有一邊長為5的直角三角形的另外兩條邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)yk0)的圖象交于A1,a)、Bb1)兩點.

1)求反比例函數(shù)的表達式;

2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標;

3)在(2)的條件下,求△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點A(0,2)和點B(4,2)都在二次函數(shù)y=x2+bx+c的圖象上,那么此拋物線在直線_____的部分是上升的.(填具體某直線的某側(cè))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點EBC邊上的點,∠AEF=90°,且EF交正方形外角的平分線CF于點F

1)如圖①,當點EBC邊上任一點(不與點B、C重合)時,求證:AE=EF

2)如圖②當點EBC邊的延長線上一點時,(1)中的結(jié)論還成立嗎? (填成立或者不成立).

3)當點EBC邊上任一點(不與點BC重合)時,若已知AE=EF,那么∠AEF的度數(shù)是否發(fā)生變化?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當x=1時,y=3;當x=3時,y=1,即當1≤x≤3時,恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請判斷并說明理由;

(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;

3)如果(2)所述的二次函數(shù)的圖象交y軸于C點,A為此二次函數(shù)圖象的頂點,B為直線x=1上的一點,當ABC為直角三角形時,寫出點B的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,ADCD,BCACBAD108°,則D=(  )

A. 144°B. 110°C. 100°D. 108°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC的邊長為2cm,P從點A出發(fā),1cm/s的速度沿AC向點C運動,到達點C停止同時點Q從點A出發(fā),2cm/s的速度沿ABBC向點C運動,到達點C停止設(shè)APQ的面積為ycm2),運動時間為xs),則下列最能反映yx之間函數(shù)關(guān)系的圖象是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小王在校園上的A處正面觀測一座教學(xué)樓墻上的大型標牌,測得標牌下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該標牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標牌的上端與樓房的頂端平齊.求此標牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).

查看答案和解析>>

同步練習(xí)冊答案