【題目】如果點A(0,2)和點B(4,2)都在二次函數(shù)y=x2+bx+c的圖象上,那么此拋物線在直線_____的部分是上升的.(填具體某直線的某側)
科目:初中數(shù)學 來源: 題型:
【題目】某商店準備進一批季節(jié)性小家電,每個進價為40元,經市場預測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.設每個定價增加x元.
(1)寫出售出一個可獲得的利潤是多少元(用含x的代數(shù)式表示)?
(2)商店若準備獲得利潤6000元,并且使進貨量較少,則每個定價為多少元?應進貨多少個?
(3)商店若要獲得最大利潤,則每個應定價多少元?獲得的最大利潤是多少?
【答案】(1)x+10元;(2)每個定價為70元,應進貨200個.(3)每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【解析】試題分析:(1)根據(jù)利潤=銷售價-進價列關系式,(2)總利潤=每個的利潤×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質求最值.
試題解析:由題意得:(1)50+x-40=x+10(元),
(2)設每個定價增加x元,
列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進貨量較少,則每個定價為70元,應進貨200個,
(3)設每個定價增加x元,獲得利潤為y元,
y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當x=15時,y有最大值為6250,所以每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【題型】解答題
【結束】
24
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關系,并證明你的結論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結論仍然成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上有A、B、C、D四個點,分別對應的數(shù)為a,b,c,d,且滿足a,b是方程|x+7|=1的兩個解(a<b),且(c﹣12)2與|d﹣16|互為相反數(shù).
(1)填空:a= 、b= 、c= 、d= ;
(2)若線段AB以3個單位/秒的速度向右勻速運動,同時線段CD以1單位長度/秒向左勻速運動,并設運動時間為t秒,A、B兩點都運動在CD上(不與C,D兩個端點重合),若BD=2AC,求t得值;
(3)在(2)的條件下,線段AB,線段CD繼續(xù)運動,當點B運動到點D的右側時,問是否存在時間t,使BC=3AD?若存在,求t得值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,四邊形AOBC是矩形,點O(0,0),點A(5,0),點B(0,3).以點A為中心,順時針旋轉矩形AOBC,得到矩形ADEF,點O,B,C的對應點分別為D,E,F.
(1)如圖①,當點D落在BC邊上時,求點D的坐標;
(2)如圖②,當點D落在線段BE上時,AD與BC交于點H.
①求證△ADB≌△AOB;
②求點H的坐標.
(3)記K為矩形AOBC對角線的交點,S為△KDE的面積,求S的取值范圍(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)軸上,點A,B,C表示的數(shù)分別是-6,10,12.點A以每秒3個單位長度的速度向右運動,同時線段BC以每秒1個單位長度的速度也向右運動.
(1)運動前線段AB的長度為________;
(2)當運動時間為多長時,點A和線段BC的中點重合?
(3)試探究是否存在運動到某一時刻,線段AB=AC?若存在,求出所有符合條件的點A表示的數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應綠色出行號召,越來越多市民選擇租用共享單車出行,已知某共享單車公司為市民提供了手機支付和會員卡支付兩種支付方式,如圖描述了兩種方式應支付金額y(元)與騎行時間x(時)之間的函數(shù)關系,根據(jù)圖象回答下列問題:
(1)求手機支付金額y(元)與騎行時間x(時)的函數(shù)關系式;
(2)李老師經常騎行共享單車,請根據(jù)不同的騎行時間幫他確定選擇哪種支付方式比較合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.
(1)求證:BD=CE;
(2)設BD與CE相交于點O,點M,N分別為線段BO和CO的中點,當△ABC的重心到頂點A的距離與底邊長相等時,判斷四邊形DEMN的形狀,無需說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)
(1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應分別購進多少件?
(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com