【題目】已知,正方形ABPD的邊長(zhǎng)為3,將邊DP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°PC,E、F分別為線段DP、CP上兩個(gè)動(dòng)點(diǎn)(不與D、P、C重合),且DE=CF,連接BE并延長(zhǎng)分別交DF、DCH、G.

(1)①求證:△BPE≌△DPF,②判斷BGDF位置關(guān)系并說(shuō)明理由;

(2)當(dāng)PE的長(zhǎng)度為多少時(shí),四邊形DEFG為菱形并說(shuō)明理由;

(3)連接AH,在點(diǎn)E、F運(yùn)動(dòng)的過(guò)程中,∠AHB的大小是否發(fā)生改變?若改變,請(qǐng)說(shuō)出是如何變化的;若不改變,請(qǐng)求出∠AHB的度數(shù).

【答案】(1)①見(jiàn)解析,②BGDF;(2)當(dāng)PE=3﹣3時(shí),四邊形DEFG為菱形;

(3)45°.

【解析】分析:

(1)①由已知條件易得BP=DP=PC,∠BPE=∠DPF=90°結(jié)合DE=CF可得PE=PF,由此即可得到△BPE≌△DPF;②△BPE≌△DPF可得∠EBP=∠FDP,結(jié)合∠FDP+∠BFH=90°,可得∠EBP+∠BFH=90°,從而可得∠BHP=90°,由此可得BG⊥DF;

(2)如下圖1,連接EF、GF,由題意可知,要使四邊形DEFG是菱形,則必須使DE=EF,由(1)中所得△BPE≌△DPF可得PF=PE,設(shè)PE=x,DE=3-x=EF,由此在Rt△PEF中由勾股定理建立方程,解方程即可求得此時(shí)PE=x=,解題時(shí)把PE=作為一個(gè)條件,結(jié)合題目中的其它條件去證明此時(shí)四邊形DEFG為菱形即可;

(3)如圖2,連接BD,作出BD的中點(diǎn)O,連接AO,HO,由已知條件結(jié)合(1)中所得BG⊥DF易得OA=OB=OD=OH=BD,由此可得點(diǎn)A、B、H、D在以O為圓心、OA為半徑的圓上,從而可得∠AHB=∠ADB=45°.

詳解

(1)①證明:由旋轉(zhuǎn)的性質(zhì)可知,△DPC是等腰直角三角形,

四邊形ABPD是正方形,

∴BP=PD=PC,∠BPE=∠DPF=90°,

∵DE=CF,

∴PE=PF,

△BPE△DPF中,

BP=PD,∠BPE=∠DPF,PE=PF,

∴△BPE≌△DPF;

②∵△BPE≌△DPF,

∴∠EBP=∠FDP,又∠FDP+∠BFH=90°,

∴∠EBP+∠BFH=90°,

∴∠BHP=90°,

∴BG⊥DF;

(2)當(dāng)PE=時(shí),四邊形DEFG為菱形;理由如下:

在正方形ABPD中,BP=PD=3,

∵PE=,EF=PE,

EF==6﹣3,DE=PD-PE=6﹣3,

∴EF=ED,

∵BG⊥DF,

∴EG垂直平分DF,

∴GD=GF,

∵∠PEF=∠PDC=45°,

∴EF∥DG,

∴∠EFD=∠FDG,

∵DE=EF,

∴∠EFD=∠EDF,

∴∠EDG=∠FDE,

∵BG⊥DF,

∴∠DEG=∠DGE,

∴DE=DG,

∴DE=DG=GF=EF,

四邊形DEFG是菱形;

(3)∠AHB的大小不變,∠AHB=45°,

連接BD,取BD的中點(diǎn)O,連接OA、OH,

四邊形ABCD是正方形,

∴∠BAD=90°,∠ADB=45°,

∵BG⊥DF,

∴∠DHB=90°,

OA=OB=OD=OH=BD,

點(diǎn)A、B、H、D在以O為圓心、OA為半徑的圓上,

∴∠AHB=∠ADB=45°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一假期小明一家自駕去距家360km的某地游玩,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若小汽車(chē)在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,行駛的路程y(單位:km)與時(shí)間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是(  )

A. 小汽車(chē)在鄉(xiāng)村公路上的行駛速度為60km/h

B. 小汽車(chē)在高速公路上的行駛速度為120km/h

C. 鄉(xiāng)村公路總長(zhǎng)為90km

D. 小明家在出發(fā)后5.5h到達(dá)目的地

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分線交于O點(diǎn),過(guò)點(diǎn)OBC的平行線交ABM點(diǎn),交ACN點(diǎn),則△AMN的周長(zhǎng)為( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)海軍亞丁灣護(hù)航十年,中國(guó)海軍被亞丁灣上來(lái)往的各國(guó)商船譽(yù)為值得信賴的保護(hù)傘如圖,在一次護(hù)航行動(dòng)中,我國(guó)海軍監(jiān)測(cè)到一批可疑快艇正快速向護(hù)航的船隊(duì)靠近.為保證船隊(duì)安全,我國(guó)海軍迅速派出甲、乙兩架直升機(jī)分別從相距20海里的船隊(duì)首(O點(diǎn))尾(A點(diǎn))前去攔截,4分鐘后同時(shí)到達(dá)B點(diǎn)將可疑快艇驅(qū)離.已知甲直升機(jī)每小時(shí)飛行180海里,航向?yàn)楸逼珫|25°,乙直升機(jī)的航向?yàn)楸逼?/span>65°,求乙直升機(jī)的飛行速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過(guò)點(diǎn)B的切線AECD的延長(zhǎng)線交于點(diǎn)A,OEBD,交BC于點(diǎn)F,交AB于點(diǎn)E.

(1)求證:∠EC

(2)若⊙O的半徑為3,AD2,試求AE的長(zhǎng);

(3)ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RIABC中,∠C=90°,AC=BC=4cm,點(diǎn)P從點(diǎn)A出發(fā)沿線段ABcm/s的速度向點(diǎn)B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts.過(guò)點(diǎn)PPDABPDABC的腰相交于點(diǎn)D

1)當(dāng)t=4-2s時(shí),求證:BCD≌△BPD;

2)當(dāng)t為何值時(shí),SAPD=3SBPD,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方形放置在如圖所示的平面直角坐標(biāo)系中,點(diǎn)軸,軸,

1)分別寫(xiě)出點(diǎn)的坐標(biāo)______;______;________

2)在軸上是否存在點(diǎn),使三角形的面積為長(zhǎng)方形ABCD面積的?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.中學(xué)生帶手機(jī)上學(xué)的現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注,為此某記者隨機(jī)調(diào)查了某市城區(qū)若干名中學(xué)生家長(zhǎng)對(duì)這種現(xiàn)象的態(tài)度(態(tài)度分為:A.無(wú)所謂;B.基本贊成;C.贊成;D.反對(duì)).并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)此次抽樣調(diào)查中,共調(diào)查了 名中學(xué)生家長(zhǎng);

(2)求出圖2中扇形C所對(duì)的圓心角的度數(shù),并將圖1補(bǔ)充完整;

(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市城區(qū)6000名中學(xué)生家長(zhǎng)中有多少名家長(zhǎng)持反對(duì)態(tài)度.

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過(guò)點(diǎn)EEFABPQF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)當(dāng)點(diǎn)EAD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);

①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長(zhǎng);

②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案