【題目】如圖,在四邊形ABCD中,AB=AD,∠C=90°,以AB為直徑的⊙O交AD于點E,CD=ED,連接BD交⊙O于點F.
(1)求證:BC與⊙O相切;
(2)若BD=10,AB=13,求AE的長.
【答案】(1)見解析;(2)
【解析】分析:(1)連接BE,可證明Rt△BCD≌Rt△BED,結(jié)合條件可證明∠BDC=∠ABD,可證得AB∥CD,最后看單詞結(jié)果;(2)連接EF,根據(jù)圓周角定理得出∠AFB=90°,在Rt△ABF中根據(jù)勾股定理得出BF=5,然后由Rt△ABF∽Rt△BDC,ED= ,從而求出AE的長.
詳解:(1)證明:連接BE.
∵ AB是直徑,
∴∠AEB=90°.
在Rt△BCD和Rt△BED 中
∴Rt△BCD≌Rt△BED.
∴∠ADB=∠BDC.
又 AD=AB,
∴∠ADB=∠ABD.
∴∠BDC=∠ABD.
∴AB∥CD.
∴∠ABC+∠C=180°.
∴∠ABC=180°-∠C=180°―90°=90°.
即BC⊥AB.
又B在⊙O上,
∴BD與⊙O相切.
(2)解:連接AF.
∵AB是直徑,
∴∠AFB=90°,即AF⊥BD.
∵AD=AB,BC=10,
∴BF=5.
在Rt△ABF和Rt△BDC中
∴Rt△ABF∽Rt△BDC.
∴=.
∴=.
∴DC=.
∴ED=.
∴AE=AD―ED=13―=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:
①在Rt△ABC中,∠C=90°,CD為AB邊上的中線,若CD=2,則AB=4;
②八邊形的內(nèi)角和度數(shù)為1080°;
③2、3、4、3這組數(shù)據(jù)的方差為0.5;
④分式方程=的解為x=;
⑤已知菱形的一個內(nèi)角為60°,一條對角線為2,則另一對角線為2.
正確的序號有( )
A. ①②③⑤ B. ①②③④ C. ①③④⑤ D. ②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖直線與相交于點,
(1)圖中與互余的角有 ,圖中與互補的角有 (備注:寫出所有符合條件的角)
(2)根據(jù)下列條件,分別求的度數(shù):①射線平分;②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織九年級學(xué)生參加漢字聽寫大賽,并隨機抽取部分學(xué)生成績作為樣本進行分析,繪制成如下的統(tǒng)計表:
請根據(jù)所給信息,解答下列問題:
(1)a=______,b=_______;
(2)請補全頻數(shù)分布直方圖;
(3)已知該年級有400名學(xué)生參加這次比賽,若成績在90分以上(含90分)的為優(yōu),估計該年級成績?yōu)閮?yōu)的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BC與AB的夾角分別為45°與68°,若點C到地面的距離CD為28cm,坐墊中軸E處與點B的距離BE為4cm,求點E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示一個正比例函數(shù)與一個一次函數(shù)的圖象,它們交于點A(4,3),一次函數(shù)的圖象與y軸交于點B,且OA=OB.
(1)求這兩個函數(shù)的解析式;
(2)求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小燁在探究數(shù)軸上兩點間距離時發(fā)現(xiàn):若兩點在軸上或與軸平行,兩點的橫坐標分別為,則兩點間距離為;若兩點在軸上或與軸平行,兩點的縱坐標分別為,則兩點間距離為.據(jù)此,小燁猜想:對于平面內(nèi)任意兩點,兩點間的距離為.
(1)請你利用下圖,試證明:;
(2)若,試在軸上求一點,使的距離最短,并求出的最小值和點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“母親節(jié)”期間,某校部分團員參加社會公益活動,準備購進一批許愿瓶進行銷售,并將所得利潤捐助給慈善機構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量 (單位:個)與銷售單價 (單位:元/個)之間的對應(yīng)關(guān)系如圖所示:
(1) 與之間的函數(shù)關(guān)系是 .
(2)若許愿瓶的進價為6元/個,按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤 (單位:元)與銷售單價 (單位:元/個)之間的函數(shù)關(guān)系式;
(3)若許愿瓶的進貨成本不超過900元,要想獲得最大利潤,試確定這種許愿瓶的銷售單價,并求出此時的最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com