【題目】甲、乙兩人以各自的交通工具、相同路線,前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí).圖中l甲、l乙分別表示甲、乙前往目的地所走的路程S(km)隨時間t(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達;②乙走了8km后遇到甲;③乙出發(fā)6分鐘后追上甲;④甲走了28分鐘時,甲乙相距3km.其中正確的是( 。
A. 只有① B. ①③ C. ②③④ D. ①③④
【答案】D
【解析】
觀察函數(shù)圖象可知,函數(shù)的橫坐標(biāo)表示時間,縱坐標(biāo)表示路程,然后根據(jù)圖象上特殊點的意義進行解答.
解:①乙在28分時到達,甲在40分時到達,所以乙比甲提前了12分鐘到達;故①正確;
④根據(jù)甲到達目的地時的路程和時間知:甲的平均速度=10÷=15(千米/時),
∴甲走了28分鐘時走了15×=7千米,
∴甲乙相距3千米;故④正確;
③設(shè)乙出發(fā)x分鐘后追上甲,則有:×x=×(18+x),解得x=6,故③正確;
②乙第一次遇到甲時,所走的距離為:6×=6(km),故②錯誤;
所以正確的結(jié)論的是①③④,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個三角形和一個矩形按照如圖的方式擴大,使他們的對應(yīng)邊之間的距離均為1,得到新的三角形和矩形,下列說法正確的是 ( )
A.新三角形與原三角形相似
B.新矩形與原矩形相似
C.新三角形與原三角形、新矩形與原矩形都相似
D.都不相似
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個整數(shù)點(橫、縱坐標(biāo)均為整數(shù)),其順序按圖中方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0)…… 根據(jù)這個規(guī)律探索可得,第50個點的坐標(biāo)為( )
A. (10,-5)B. (10,-1) C. (10,0) D. (10,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有點A(1,0),點A第一次跳動至點,第二次點跳動至點第三次點跳動至點,第四次點跳動至點……,依此規(guī)律跳動下去,則點與點之間的距離是( )
A. 2017B. 2018C. 2019D. 2020
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D是AB邊上任意一點,∠CDE=60°,DE與∠ABC外角平分線相交于點E.
(1)求證:CD=DE;
(2)若D是AB延長線上任意一點,∠CDE=60°,DE與∠ABC外角平分線相交于點E.請畫出圖形,判斷CD=DE是否還成立?若成立,請給予證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科學(xué)研究發(fā)現(xiàn),空氣含氧量y(克/立方米)與海拔高度x(米)之間近似地滿足一次函數(shù)關(guān)系.經(jīng)測量,在海拔高度為1000米的地方,空氣含氧量約為267克/立方米;在海拔高度為2000米的地方,空氣含氧量約為235克/立方米.
(1)求出y與x的函數(shù)表達式;
(2)求出海拔高度為0米的地方的空氣含氧量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探究發(fā)現(xiàn))
如圖1,在△ABC中,點P是內(nèi)角∠ABC和外角∠ACD的角平分線的交點,試猜想∠P與∠A之間的數(shù)量關(guān)系,并證明你的猜想.
(遷移拓展)
如圖2,在△ABC中,點P是內(nèi)角∠ABC和外角∠ACD的n等分線的交點,即∠PBC=∠ABC,∠PCD=∠ACD,
試猜想∠P與∠A之間的數(shù)量關(guān)系,并證明你的猜想.
(應(yīng)用創(chuàng)新)
已知,如圖3,AD、BE相交于點C,∠ABC、∠CDE、∠ACE的角平分線交于點P,∠A=35°,∠E=25°,則∠BPD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)已知四邊形ABCD是矩形,對角線AC和BD相交于點P,若在矩形的上方加一個△DEA,且使DE∥AC,AE∥BD.
(1)求證:四邊形DEAP是菱形;
(2)若AE=CD,求∠DPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點O,頂點為C.
(1)求拋物線的函數(shù)解析式.
(2)設(shè)點D在拋物線上,點E在拋物線的對稱軸上,若四邊形AODE是平行四邊形,求點D的坐標(biāo).
(3)聯(lián)接BC交x軸于點F.y軸上是否存在點P,使得△POC與△BOF相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com