【題目】如圖,AB為⊙O的直徑,點(diǎn)D,E為⊙O上的兩個(gè)點(diǎn),延長AD至C,使∠CBD=∠BED.

(1)求證:BC是⊙O的切線;
(2)當(dāng)點(diǎn)E為弧AD的中點(diǎn)且∠BED=30°時(shí),⊙O半徑為2,求DF的長度.

【答案】
(1)證明:∵AB為⊙O的直徑,

∴∠ADB=90°,

∴∠A+∠DBA=90°,

= ,

∴∠A=∠E,

∵∠CBD=∠E,

∴∠CBD=∠A,

∴∠CBD+∠DBA=90°,

∴AB⊥BC,

∴BC是⊙O的切線,


(2)解:∵∠BED=30°,

∴∠A=∠E=∠CBD=30°,

∴∠DBA=60°,

∵點(diǎn)E為弧AD的中點(diǎn),

∴∠EBD=∠EBA=30°,

∵⊙O半徑為2,

∴AB=4,BD=2,AD=2 ,

在Rt△BDF中,∠DBF=90°,

tan∠DBF= =

∴DF=


【解析】(1)由AB為⊙O的直徑,得到∠ADB=90°,根據(jù)圓周角定理得到∠A=∠E,得到AB⊥BC,于是得到結(jié)論;(2)根據(jù)圓周角定理得到∠A=∠E=∠CBD=30°,進(jìn)而得到∠DBA=60°,根據(jù)三角函數(shù)的定義即可得出結(jié)論。
【考點(diǎn)精析】掌握圓周角定理和銳角三角函數(shù)的定義是解答本題的根本,需要知道頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,DE∥AC交AB于E,DFAB交AC于F,若AF=6,則四邊形AEDF的周長是(  。

A. 24 B. 28 C. 32 D. 36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某班同學(xué)在一次體檢中每分鐘心跳的頻數(shù)分布直方圖(次數(shù)均為整數(shù)).已知該班只有5位同學(xué)的心跳每分鐘75,請觀察圖示指出下列說法不一定正確的是( )

A. 數(shù)據(jù)75落在第二小組 B. 第四小組的頻率為0.1

C. 心跳為每分鐘75次的人數(shù)占該班體檢人數(shù)的 D. 心跳是65次的人數(shù)最多

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種動物的身高ydm)是其腿長xdm)的一次函數(shù).當(dāng)動物的腿長為6dm時(shí),身高為45.5dm;當(dāng)動物的腿長為14dm時(shí),身高為105.5dm

1)寫出yx之間的關(guān)系式;

2)當(dāng)該動物腿長10dm時(shí),其身高為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=﹣ x+b(b為常數(shù))的圖象與x軸交于點(diǎn)A(2,0),與y軸交于點(diǎn)B,與反比例函數(shù)y= 的圖象交于點(diǎn)C(﹣2,m).
(1)求點(diǎn)C的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)過點(diǎn)C的直線與y軸交于點(diǎn)D,且SCBD:SBOC=2:1,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)C在AOB的一邊OA上,過點(diǎn)C的直線DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度數(shù);

(2)求證:CG平分OCD;

(3)當(dāng)O為多少度時(shí),CD平分OCF,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DAB上的一點(diǎn),且AD2BD,EBC的中點(diǎn),CD、AE相交于點(diǎn)F.若EFC的面積為1,則ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)幾何的一個(gè)重要方法就是要學(xué)會抓住基本圖形,讓我們來做一次研究性學(xué)習(xí).

1)如圖①所示的圖形,像我們常見的學(xué)習(xí)用品一圓規(guī),我們常把這樣的圖形叫做規(guī)形圖.請你觀察規(guī)形圖,試探究∠BOC與∠A、∠B、∠C之間的關(guān)系,并說明理由:

2)如圖②,若ABC中,BO平分∠ABC,CO平分∠ACB,且它們相交于點(diǎn)O,試探究∠BOC與∠A的關(guān)系;

3)如圖③,若ABC中,∠ABO=ABC,∠ACO=ACB,且BO、CO相交于點(diǎn)O,請直接寫出∠BOC與∠A的關(guān)系式為    _

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中點(diǎn)A、B在坐標(biāo)軸上,其中A0,a),Bb0),滿足|a3|+0

1)求點(diǎn)A、B的坐標(biāo);

2)將AB平移到CD,點(diǎn)A對應(yīng)點(diǎn)C(﹣2,m),若△ABC面積為13,連接CO,求點(diǎn)C的坐標(biāo);

3)在(2)的條件下,求證:∠AOC=∠OAB+OCD;

4)如圖2,若ABCD,點(diǎn)CD也在坐標(biāo)軸上,點(diǎn)F為線段AB上一動點(diǎn)(不包含A、B兩點(diǎn)),連接OFFP平分∠BFO,∠BCP2PCD,試證明:∠COF3P﹣∠OFP(提示:可直接利用(3)的結(jié)論).

查看答案和解析>>

同步練習(xí)冊答案