【題目】如圖1ABC中,ABAC,∠BAC90°,CD平分∠ACBBECD,垂足ECD的延長線上.請解答下列問題:

1)圖中與∠DBE相等的角有:   ;

2)直接寫出BECD的數(shù)量關(guān)系;

3)若ABC的形狀、大小不變,直角三角形BEC變?yōu)閳D2中直角三角形BED,∠E90°,且∠EDBC,DEAB相交于點(diǎn)F.試探究線段BEFD的數(shù)量關(guān)系,并證明你的結(jié)論.

【答案】1)∠ACE和∠BCD;

2BECD;

3BEDF,證明見解析

【解析】

1)根據(jù)三角形內(nèi)角和定理得到∠DBE=∠ACE,根據(jù)角平分線的定義得到∠BCD=∠ACE,得到答案;

2)延長BECA延長線于F,證明CEF≌△CEB,得到FEBE,證明ACD≌△ABF,得到CDBF,證明結(jié)論;

3)過點(diǎn)DDGCA,交BE的延長線于點(diǎn)G,與AE相交于H,分別證明BGH≌△DFH、BDE≌△GDE,根據(jù)全等三角形的性質(zhì)解答即可.

解:(1)∵BECD,

∴∠E90°,

∴∠E=∠BAC,又∠EDB=∠ADC,

∴∠DBE=∠ACE,

CD平分∠ACB,

∴∠BCD=∠ACE,

∴∠DBE=∠BCD,

故答案為:∠ACE和∠BCD;

2)延長BECA延長線于F,

CD平分∠ACB,

∴∠FCE=∠BCE,

CEFCEB中,

,

∴△CEF≌△CEBASA),

FEBE,

ACDABF中,

,

∴△ACD≌△ABFASA),

CDBF,

BECD;

3BEDF

證明:過點(diǎn)DDGCA,交BE的延長線于點(diǎn)G,與AE相交于H,

DGAC,

∴∠GDB=∠C,∠BHD=∠A90°,

∵∠EDBC,

∴∠EDB=∠EDGC,

BEED,

∴∠BED90°

∴∠BED=∠BHD,

∵∠EFB=∠HFD,

∴∠EBF=∠HDF

ABAC,∠BAC90°

∴∠C=∠ABC45°,

GDAC

∴∠GDB=∠C45°,

∴∠GDB=∠ABC45°

BHDH,

BGHDFH中,

,

∴△BGH≌△DFHASA

BGDF

∵在BDEGDE中,

∴△BDE≌△GDEASA

BEEG,

BE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用我們學(xué)過的知識(shí),可以得出下面這個(gè)優(yōu)美的等式:

;該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔美.

.請你證明這個(gè)等式;

.如果,請你求出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面內(nèi)一點(diǎn)與一直線,如果過點(diǎn)作直線,垂足為,那么垂足叫做點(diǎn)在直線上的射影;如果線段的兩個(gè)端點(diǎn)在直線上的射影分別為點(diǎn),那么線段叫做線段在直線上的射影.

如圖,已知平面內(nèi)一點(diǎn)與一直線,如果過點(diǎn)作直線,垂足為,那么垂足叫做點(diǎn)在直線上的射影;如果線段的兩個(gè)端點(diǎn)在直線上的射影分別為點(diǎn),那么線段叫做線段在直線上的射影.

如圖②,、為線段外兩點(diǎn),,,垂足分別為

點(diǎn)在上的射影是________點(diǎn),點(diǎn)在上的射影是________點(diǎn),

線段上的射影是________,線段上的射影是________;

根據(jù)射影的概念,說明:直角三角形斜邊上的高是兩條直角邊在斜邊上射影的比例中項(xiàng).(要求:畫出圖形,寫出說理過程.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小玲和弟弟小東分別從家和圖書館同時(shí)當(dāng)發(fā),沿同一條路相向而行,小玲開始跑步,中途改為步行,到達(dá)圖書館恰好用30min.小東騎自行車以300m/min的速度直接回家,兩人離家的路程ym)與各自離開出發(fā)地的時(shí)間xmin)之間的函數(shù)函象如圖所示.

1)家與圖書館之間的路程為   m,小東從圖書館到家所用的時(shí)間為   

2)求小玲步行時(shí)yx之間的函數(shù)關(guān)系式

3)求兩人相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ΔABC、ΔCDE都是等邊三角形,AD、BE相交于點(diǎn)O,點(diǎn)M、點(diǎn)N分別是線段AD、BE的中點(diǎn).

1)證明: AD=BE.2)求∠DOE的角度。(3)證明:ΔMNC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖所示直線y=kx+2(k0)與反比例函數(shù)y=(m0)分別交于點(diǎn)P,與y軸、x軸分別交于點(diǎn)A和點(diǎn)B,且cosABO=,過P點(diǎn)作x軸的垂線交于點(diǎn)C,連接AC,

(1)求一次函數(shù)的解析式.

(2)若AC是△PCB的中線,求反比例函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90,連接AE、BD交于點(diǎn)O. AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.

(1)如圖①,求證:AE=BD;

(2)如圖②,若AC=DC,在不添加任何輔助線的情況下,請直接寫出圖②中四對全等的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,AC是弦,直線EF經(jīng)過點(diǎn)C,ADEF于點(diǎn)DDAC=BAC.

(1)求證:EFO的切線;

(2)求證:AC2=AD·AB

(3)若O的半徑為2,ACD=300,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在等邊三角形中,邊上的動(dòng)點(diǎn),以為一邊,向上作等邊三角形,連接

1全等嗎?請說明理由;

2)試說明:

3)如圖(2),將動(dòng)點(diǎn)運(yùn)動(dòng)到邊的延長線上,所作三角形仍為等邊三角形,請問是否仍有?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案