【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD·AB;
(3)若⊙O的半徑為2,∠ACD=300,求圖中陰影部分的面積.
【答案】解:(1)證明:連接OC,
∵OA=OC,∴∠BAC=∠OCA。
∵∠DAC=∠BAC,∴∠OCA=∠DAC。∴OC∥AD。
∵AD⊥EF,∴OC⊥EF。
∵OC為半徑,∴EF是⊙O的切線。
(2)證明:∵AB為⊙O直徑,AD⊥EF,
∴∠BCA=∠ADC=90°。
∵∠DAC=∠BAC,∴△ACB∽△ADC。
∴。∴AC2=ADAB。
(3)∵∠ACD=30°,∠OCD=90°,∴∠OCA=60°.
∵OC=OA,∴△OAC是等邊三角形。∴AC=OA=OC=2,∠AOC=60°。
∵在Rt△ACD中,AD=AC=1。
由勾股定理得:DC=,
∴陰影部分的面積是S=S梯形OCDA﹣S扇形OCA=×(2+1)×﹣。
【解析】
試題(1)連接OC,根據(jù)OA=OC推出∠BAC=∠OCA=∠DAC,推出OC∥AD,得出OC⊥EF,根據(jù)切線的判定推出即可。
(2)證△ADC∽△ACB,得出比例式,即可推出答案。
(3)求出等邊三角形OAC,求出AC、∠AOC,在Rt△ACD中,求出AD、CD,求出梯形OCDA和扇形OCA的面積,相減即可得出答案。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,且點E在線段AD上,若AF=4,∠F=60°.
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求DE的長度和∠EBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延長線上.請解答下列問題:
(1)圖中與∠DBE相等的角有: ;
(2)直接寫出BE和CD的數(shù)量關(guān)系;
(3)若△ABC的形狀、大小不變,直角三角形BEC變?yōu)閳D2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE與AB相交于點F.試探究線段BE與FD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.
(1)當直線MN繞點C旋轉(zhuǎn)到圖(1)的位置時,顯然有:DE=AD+BE;請證明.
(2)當直線MN繞點C旋轉(zhuǎn)到圖(2)的位置時,求證:DE=AD-BE;
(3)當直線MN繞點C旋轉(zhuǎn)到圖(3)的位置時,試問(2)中DE、AD、BE的關(guān)系還成立嗎?若成立,請證明;若不成立,它們又具有怎樣的等量關(guān)系?請證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,MN是⊙O的直徑,若∠A=10°,∠PMQ=40°,以PM為邊作圓的內(nèi)接正多邊形,則這個正多邊形是________邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應(yīng)點,點B′與點B是對應(yīng)點,連接AB′,且A、B′、A′在同一條直線上,求AA′的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)設(shè)商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,經(jīng)過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.
(1)a 0, 0(填“>”或“<”);
(2)若該拋物線關(guān)于直線x=2對稱,求拋物線的函數(shù)表達式;
(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,E為邊BC上的點,且AB=AE,D為線段BE的中點,過點E作EF⊥AE,過點A作AF∥BC,且AF、EF相交于點F.
(1)求證:∠C=∠BAD;
(2)求證:AC=EF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com