【題目】某環(huán)衛(wèi)公司承包了市區(qū)兩個(gè)片區(qū)道路的清掃任務(wù),需要購(gòu)買某廠家A,B兩種型號(hào)的馬路清掃車,購(gòu)買5輛A型馬路清掃車和6輛B型馬路清掃車共需171萬(wàn)元;購(gòu)買3輛A型馬路清掃車和12輛B型馬路清掃車共需237萬(wàn)元.
(1)求這兩種馬路清掃車的單價(jià);
(2)恰逢該廠舉行30周年慶,決定對(duì)這兩種馬路清掃車開(kāi)展促銷活動(dòng),具體方案如下:購(gòu)買A型馬路清掃車按原價(jià)的八折銷售,購(gòu)買B型馬上清掃車不超過(guò)10輛時(shí)按原價(jià)銷售,超過(guò)10輛的部分按原價(jià)的七折銷售.設(shè)購(gòu)買x輛A種馬路清掃車需要y1元,購(gòu)買x(x>0)個(gè)B型馬路清掃車需要y2元,分別求出y1,y2關(guān)于x的函數(shù)關(guān)系式;
(3)若該公司承包的道路清掃面積為118000m2,每輛A型馬路清掃車每天清掃5000m2,每輛B型馬路清掃車每天清掃6000m2,公司準(zhǔn)備購(gòu)買20輛馬路清掃車,且B型馬路清掃車的數(shù)量大于10.請(qǐng)你幫該公司設(shè)計(jì)出最省錢的購(gòu)買方案.請(qǐng)說(shuō)明理由.
【答案】(1)A型馬路清掃車的單價(jià)為15萬(wàn)元,B型馬路清掃車的單價(jià)為16萬(wàn)元;(2)y1=12x,當(dāng)0<x≤10時(shí),y2=16x;當(dāng)x>10時(shí),y2=11.2x+48;(3)該公司購(gòu)買A型馬路清掃車2輛,購(gòu)買B型馬路清掃車18輛時(shí)最省錢,最低費(fèi)用為273.6萬(wàn)元.
【解析】
(1)設(shè)A型馬路清掃車的單價(jià)為a萬(wàn)元,B型馬路清掃車的單價(jià)為b萬(wàn)元,根據(jù)“購(gòu)買5輛A型馬路清掃車和6輛B型馬路清掃車共需171萬(wàn)元;購(gòu)買3輛A型馬路清掃車和12輛B型馬路清掃車共需237萬(wàn)元”即可得出關(guān)于a、b的二元一次方程組,解方程組即可得出結(jié)論;
(2)根據(jù)“A型馬路清掃車按原價(jià)的八折銷售,購(gòu)買B型馬上清掃車不超過(guò)10輛時(shí)按原價(jià)銷售,超過(guò)10輛的部分按原價(jià)的七折銷售”,即可得出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(3)設(shè)該公司購(gòu)買B型馬路清掃車m輛,則購(gòu)買A型馬路清掃車(20m)輛,根據(jù)題意求出m的取值范圍,即可解答.
(1)設(shè)A型馬路清掃車的單價(jià)為a萬(wàn)元,B型馬路清掃車的單價(jià)為b萬(wàn)元,
則由題意可知:,解得,
答:A型馬路清掃車的單價(jià)為15萬(wàn)元,B型馬路清掃車的單價(jià)為16萬(wàn)元;
(2)由題意可知:y1=0.8×15x,即y1=12x,
當(dāng)0<x≤10時(shí),y2=16x;
當(dāng)x>10時(shí),y2=16×10+16(x﹣10)×0.7,即y2=11.2x+48.
∴y2=;
(3)設(shè)該公司購(gòu)買B型馬路清掃車m輛,則購(gòu)買A型馬路清掃車(20﹣m)輛,
根據(jù)題意得,,
解得m≥18,
∵A型馬路清掃車的單價(jià)比B型馬路清掃車的單價(jià)便宜,
∴m=18時(shí),該公司最省錢,此時(shí)購(gòu)買總費(fèi)用為:15×0.8×(20﹣18)+16×10+16×0.7×(18﹣10)=273.6(萬(wàn)元).
即該公司購(gòu)買A型馬路清掃車2輛,購(gòu)買B型馬路清掃車18輛時(shí)最省錢,最低費(fèi)用為273.6萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生對(duì)《最強(qiáng)大腦》、《朗讀者》、《中國(guó)詩(shī)詞大會(huì)》、《出彩中國(guó)人》四個(gè)電視節(jié)目的喜愛(ài)情況,隨杋抽取了名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛(ài)的節(jié)目),并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表:
學(xué)生最喜愛(ài)的節(jié)目人數(shù)統(tǒng)計(jì)表
節(jié)目 | 人數(shù)(名) | 百分比 |
最強(qiáng)大腦 | ||
朗讀者 | ||
中國(guó)詩(shī)詞大會(huì) | ||
出彩中國(guó) |
根據(jù)以上提供的信息,解答下列問(wèn)題:
(1)______,_____,____;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生5000名,根據(jù)抽樣調(diào)查結(jié)果,估計(jì)該校最喜愛(ài)《中國(guó)詩(shī)詞大會(huì)》節(jié)目的學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c交x軸于A、B兩點(diǎn),其中點(diǎn)A坐標(biāo)為(1,0),與y軸交于點(diǎn)C(0,﹣3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖①,連接AC,點(diǎn)P在拋物線上,且滿足∠PAB=2∠ACO.求點(diǎn)P的坐標(biāo);
(3)如圖②,點(diǎn)Q為x軸下方拋物線上任意一點(diǎn),點(diǎn)D是拋物線對(duì)稱軸與x軸的交點(diǎn),直線AQ、BQ分別交拋物線的對(duì)稱軸于點(diǎn)M、N.請(qǐng)問(wèn)DM+DN是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知: 是的兩條弦,于點(diǎn),的平分線交于點(diǎn),交于點(diǎn),連接
如圖1,求的度數(shù);
如圖2,為上一點(diǎn),連接,當(dāng)時(shí),求證:
如圖3 ,在的條件下,當(dāng)為的直徑時(shí),經(jīng)過(guò)點(diǎn)的弦交于點(diǎn),若的面積為,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.其中正確結(jié)論的是______________(只填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的方程
(1)求證:m取任何值時(shí),方程總有實(shí)根.
(2)若二次函數(shù)的圖像關(guān)于y軸對(duì)稱.
a、求二次函數(shù)的解析式
b、已知一次函數(shù),證明:在實(shí)數(shù)范圍內(nèi),對(duì)于同一x值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值均成立.
(3)在(2)的條件下,若二次函數(shù)的象經(jīng)過(guò)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值均成立,求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,拋物線交軸于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),交軸于點(diǎn).已知.
(1)求拋物線的解析式;
(2)已知直線,若直線與拋物線有且只有一個(gè)交點(diǎn)求的面積;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)使若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家的門框上裝有一把防盜門鎖(如圖1),其平面結(jié)構(gòu)圖如圖2所示,鎖身可以看成由兩條等弧,和矩形組成的,的圓心是倒鎖按鈕點(diǎn).已知的弓形高,,.當(dāng)鎖柄繞著點(diǎn)順時(shí)針旋轉(zhuǎn)至位置時(shí),門鎖打開(kāi),此時(shí)直線與所在的圓相切,且,.
(1)求所在圓的半徑;
(2)求線段的長(zhǎng)度.(,結(jié)果精確到)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com