【題目】如圖,長方形ABCD中,AB=9,AD=4.E為CD邊上一點(diǎn),CE=6. 點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿著邊BA向終點(diǎn)A運(yùn)動(dòng),連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),△PAE為直角三角形?

(2)是否存在這樣的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,請(qǐng)說明理由.

【答案】(1)t=6,t=;(2)PA=PE,t=

【解析】

(1)需要分類討論:AE為斜邊和AP為斜邊兩種情況下的直角三角形;

(2)假設(shè)存在.利用角平分線的性質(zhì),平行線的性質(zhì)以及等量代換推知:∠PEA=EAP,則PE=PA,由此列出關(guān)于t的方程,通過解方程求得相應(yīng)的t的值即可.

(1)∵矩形ABCD中,AB=9,AD=4,

CD=AB=9,D=90°,

DE=9-6=3,

AE===5;

若∠EPA=90°,t=6;

②若∠PEA=90°,(6-t)2+42+52=(9-t)2,
解得t=

綜上所述,當(dāng)t=6t=時(shí),PAE為直角三角形;

(2)假設(shè)存在,

EA平分∠PED,

∴∠PEA=DEA,

CDAB,

∴∠DEA=EAP,

∴∠PEA=EAP,

PE=PA,

(6-t)2+42=(9-t)2,

解得t=

∴滿足條件的t存在,此時(shí)t=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=AC,AD=AE,BE、CE相交于點(diǎn)F,則圖中全等三角形共有( 。⿲(duì).

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、C把 分成三等分,ED是⊙O的切線,過點(diǎn)B、C分別作半徑的垂線段,已知∠E=45°,半徑OD=1,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能判定直線a與b平行的是(

A.∠1=∠2
B.∠2=∠3
C.∠3=∠5
D.∠3+∠4=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場第一次用11000元購進(jìn)某款拼裝機(jī)器人進(jìn)行銷售,很快銷售一空,商家又用24000元第二次購進(jìn)同款機(jī)器人,所購進(jìn)數(shù)量是第一次的2倍,但單價(jià)貴了10元.
(1)求該商家第一次購進(jìn)機(jī)器人多少個(gè)?
(2)若所有機(jī)器人都按相同的標(biāo)價(jià)銷售,要求全部銷售完畢的利潤率不低于20%(不考慮其它因素),那么每個(gè)機(jī)器人的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初二()班的全體同學(xué)在體測當(dāng)天沿著同一條路勻速從名校聯(lián)中班級(jí)教室出發(fā)到重慶一中本部操場參加體育測試,行進(jìn)到本部綜合樓時(shí)班主任老師發(fā)現(xiàn)未帶相關(guān)體測器材,立即派小趙同學(xué)原路勻速跑回本班教室取器材(取器材時(shí)間為分鐘),然后馬上又以原速的去追趕班級(jí)隊(duì)伍當(dāng)途中再次經(jīng)過綜合樓時(shí),小趙發(fā)現(xiàn)班級(jí)隊(duì)伍在自己前面不遠(yuǎn)處,于是他又以之前的速度追趕班級(jí)隊(duì)伍,結(jié)果仍然比班級(jí)隊(duì)伍晚分鐘到達(dá)本部操場如圖所示,設(shè)小趙與本部操場之間距離為),小趙所用時(shí)間為),則當(dāng)小趙途中再次經(jīng)過綜合樓時(shí),班級(jí)隊(duì)伍(隊(duì)伍長度忽略不計(jì))離本部操場的距離是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若正整數(shù)k滿足個(gè)位數(shù)字為1,其他數(shù)位上的數(shù)字均不為1且十位與百位上的數(shù)字相等,

我們稱這樣的數(shù)k言唯一數(shù),交換其首位與個(gè)位的數(shù)字得到一個(gè)新數(shù)k',并記F(k)=

(1)最大的四位言唯一數(shù)   ,最小的三位言唯一數(shù)   ;

(2)證明:對(duì)于任意的四位言唯一數(shù)”m,m+m'能被11整除;

(3)設(shè)四位言唯一數(shù)”n=1000x+100y+10y+1(2≤x≤9,0≤y≤9y≠1,x、y均為整數(shù)),若F(n)仍然為言唯一數(shù)”,求所有滿足條件的四位言唯一數(shù)”n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車廠去年每個(gè)季度汽車銷售數(shù)量(輛)占當(dāng)季汽車產(chǎn)量(輛)百分比的統(tǒng)計(jì)圖如圖所示.根據(jù)統(tǒng)計(jì)圖回答下列問題:

(1)若第一季度的汽車銷售量為2100輛,求該季的汽車產(chǎn)量;
(2)圓圓同學(xué)說:“因?yàn)榈诙谌@兩個(gè)季度汽車銷售數(shù)量占當(dāng)季汽車產(chǎn)量是從75%降到50%,所以第二季度的汽車產(chǎn)量一定高于第三季度的汽車產(chǎn)量”,你覺得圓圓說的對(duì)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求下列各式的值

(1) (2)

(3) (4)

(5)+ (6)

查看答案和解析>>

同步練習(xí)冊(cè)答案