【題目】如圖,已知點(diǎn)、在反比例函數(shù)上,作等腰直角三角形,點(diǎn)為斜邊的中點(diǎn),連并延長交軸于點(diǎn)

求反比例函數(shù)的解析式;

的面積是多少?

若點(diǎn)在直線上,請求出直線的解析式.

【答案】(1);(2)3;(3) y=x+5.

【解析】

(1)根據(jù)點(diǎn)A坐標(biāo)可求出k值,即可求出反比例函數(shù)的解析式.(2)由是等腰直角三角形可知,是等腰直角三角,進(jìn)而可知OE=OC,設(shè)B(a, ),根據(jù)三角形面積公式即可求得的面積.(3)根據(jù)k=-6可知A(-2,3),由△BCD是等腰直角三角形可知BD的斜率為1,設(shè)BD的解析式為:y=kx+b,A代入可求出b的值即可直線BD的解析式.

∵點(diǎn)在反比例函數(shù)上,

解得:,

,

∴反比例函數(shù)的解析式為;

是等腰直角三角形,點(diǎn)為斜邊的中點(diǎn),

平分

,

,

是等腰直角三角形,

,

設(shè),

,,

的面積為;

,

是等腰直角三角形,

∴直線的斜率為,

設(shè)直線,

∵點(diǎn)在直線上,

,

解得,

∴直線的解析式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AC,AD=AE,BECD相交于O.圖中全等的三角形有(  )對.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對角線的交點(diǎn)處,∠QPN=α,∠QPN的兩邊分別與正方形ABCD的邊ADCD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C、D不重合).

(1)如圖①,當(dāng)α=90°時,求證:DE+DF=AD

(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時,(1)中的結(jié)論變?yōu)?/span> ,請給出證明.

(3)(2)的條件下,將∠QPN繞點(diǎn)P旋轉(zhuǎn),若旋轉(zhuǎn)過程中∠QPN的邊PQ與邊AD的延長線交于點(diǎn)E,其他條件不變,探究在整個運(yùn)動變化過程中,DEDF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P是雙曲線y=上的一個動點(diǎn),連結(jié)OP,若將線段OP繞點(diǎn)O逆時針旋轉(zhuǎn)90°得到線段OQ,則經(jīng)過點(diǎn)Q的雙曲線的表達(dá)式為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張莊甲、乙兩家草莓采摘園的草莓銷售價格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為y(元),在乙園所需總費(fèi)用為y(元),y、y之間的函數(shù)關(guān)系如圖所示,折線OAB表示y之間的函數(shù)關(guān)系.

1)甲采摘園的門票是  元,在乙園采摘草莓超過______后超過部分有打折優(yōu)惠;

2)當(dāng)采摘量時,采摘多少千克草莓,甲、乙兩家采摘園的總費(fèi)用相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)ykx+b的圖象與x軸,y軸分別交于點(diǎn)(20),點(diǎn)(03).有下列結(jié)論:圖象經(jīng)過點(diǎn)(1,﹣3);關(guān)于x的方程kx+b0的解為x2;關(guān)于x的方程kx+b3的解為x0;當(dāng)x2時,y0.其中正確的是(  )

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx﹣k的圖象的交點(diǎn)坐標(biāo)為A(m,2).

(1)求m的值和一次函數(shù)的解析式;

(2)設(shè)一次函數(shù)y=kx﹣k的圖象與y軸交于點(diǎn)B,求△AOB的面積;

(3)直接寫出使函數(shù)y=kx﹣k的值大于函數(shù)y=x的值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點(diǎn)N,若sinE=,AK=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線相交于點(diǎn)DDEAB,DFAC,垂足分別為E,F,AB6,AC4,則BE_____

查看答案和解析>>

同步練習(xí)冊答案