【題目】某區(qū)為了解七年級學(xué)生開展跳繩活動的情況,隨機調(diào)查了該區(qū)部分學(xué)校七年級學(xué)生1分鐘跳繩的次數(shù),將調(diào)查結(jié)果進(jìn)行統(tǒng)計,下面是根據(jù)調(diào)查數(shù)據(jù)制作的統(tǒng)計圖表的一部分.

分組

次數(shù)x(個)

人數(shù)

A

0≤x<120

24

B

120≤x<130

72

C

130≤x<140

D

x≥140

根據(jù)以上信息,解答下列問題:
(1)在被調(diào)查的學(xué)生中,跳繩次數(shù)在120≤x<130范圍內(nèi)的人數(shù)為人,跳繩次數(shù)在0≤x<120范圍內(nèi)的人數(shù)占被調(diào)查人數(shù)的百分比為%;
(2)本次共調(diào)查了名學(xué)生,其中跳繩次數(shù)在130≤x<140范圍內(nèi)的人數(shù)為人,跳繩次數(shù)在x≥140范圍內(nèi)的人數(shù)占被調(diào)查人數(shù)的百分比為%;
(3)該區(qū)七年級共有4000名學(xué)生,估計該區(qū)七年級學(xué)生1分鐘跳繩的次數(shù)不少于130個的人數(shù).

【答案】
(1)72;12%
(2)200;59;22.5
(3)解:估計該區(qū)七年級學(xué)生1分鐘跳繩的次數(shù)不少于130個的人數(shù)是:4000× =2080(人).
【解析】(2)解:調(diào)查的總?cè)藬?shù)是200人; 跳繩次數(shù)在130≤x<140范圍內(nèi)的人數(shù)為200×29.5%=59(人),
繩次數(shù)在x≥140范圍內(nèi)的人數(shù)占被調(diào)查人數(shù)的人數(shù)是200﹣24﹣72﹣59=45(人),
則所長的百分比是 =22.5%.
故答案是:200,59,22.5;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC中,AB=AC=5,△ABC的面積為10,則BC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點E,連接AC交DE于點F,點G為AF的中點,∠ACD=2∠ACB.若DG=3,EC=1,則DE的長為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個 的函數(shù)圖像經(jīng)過平移后能與某反比例函數(shù)的圖像重合,那么稱這個函數(shù)是 的“反比例平移函數(shù)”.
例如: 的圖像向左平移2個單位,再向下平移1個單位得到 的圖像,則 的“反比例平移函數(shù)”.
(1)若矩形的兩邊分別是2cm、3cm,當(dāng)這兩邊分別增加 cm、 cm后,得到的新矩形的面積為8 ,求 的函數(shù)表達(dá)式,并判斷這個函數(shù)是否為“反比例平移函數(shù)”.
(2)如圖,在平面直角坐標(biāo)系中,點O為原點,矩形OABC的頂點A、C的坐標(biāo)分別為(9,0)、(0,3) .點D是OA的中點,連接OB、CD交于點E,“反比例平移函數(shù)” 的圖像經(jīng)過B、E兩點.則這個“反比例平移函數(shù)”的表達(dá)式為;這個“反比例平移函數(shù)”的圖像經(jīng)過適當(dāng)?shù)淖儞Q與某一個反比例函數(shù)的圖像重合,請寫出這個反比例函數(shù)的表達(dá)式

(3)在(2)的條件下, 已知過線段BE中點的一條直線 交這個“反比例平移函數(shù)”圖像于P、Q兩點(P在Q的右側(cè)),若B、E、P、Q為頂點組成的四邊形面積為16,請求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中, =a,點G,H分別在邊AB,DC上,且HA=HG,點E為AB邊上的一個動點,連接HE,把△AHE沿直線HE翻折得到△FHE.

(1)如圖1,當(dāng)DH=DA時,填空:∠HGA=度;
(2)如圖1,當(dāng)DH=DA時,若EF∥HG,求∠AHE的度數(shù),并求此時的最小值;
(3)如圖3,∠AEH=60°,EG=2BG,連接FG,交邊DC于點P,且FG⊥AB,G為垂足,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=a(x﹣1)(x﹣4)與x軸相交于點A、B(點A在點B的左側(cè)),與x軸相交于點C,點D在線段CB上(點D不與B、C重合),過點D作CA的平行線,與拋物線相交于點E,直線BC的解析式為y=kx+2.

(1)拋物線的解析式為;
(2)求線段DE的最大值;
(3)當(dāng)點D為BC的中點時,判斷四邊形CAED的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,某種商品在第x天的售價與銷量的相關(guān)信息如下表;已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品每天的利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大?最大利潤是多少?
(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡求值
(1)計算: ﹣3tan230°+2
(2)化簡: ÷(1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在邊OA上的點E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.

(1)求OE的長及經(jīng)過O,D,C三點拋物線的解析式;
(2)一動點P從點C出發(fā),沿CB以每秒2個單位長度的速度向點B運動,同時動點Q從E點出發(fā),沿EC以每秒1個單位長度的速度向點C運動,當(dāng)點P到達(dá)點B時,兩點同時停止運動,設(shè)運動時間為t秒,當(dāng)t為何值時,DP=DQ;
(3)若點N在(1)中拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使M,N,C,E為頂點的四邊形是平行四邊形?若存在,請求出M點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案