【題目】某同學(xué)進(jìn)行社會調(diào)查,隨機(jī)抽查了某個小區(qū)的200戶家庭的年收入,并繪制成統(tǒng)計圖(如圖).請你根據(jù)統(tǒng)計圖給出的信息回答:
(1)樣本數(shù)據(jù)的中位數(shù)是_____,眾數(shù)是_____;
(2)這200戶家庭的平均年收入為_____萬元;
(3)在平均數(shù)、中位數(shù)兩數(shù)中,_____更能反映這個小區(qū)家庭的年收入水平.
(4)如果該小區(qū)有1200戶住戶,請你根據(jù)抽樣調(diào)查的結(jié)果估計該小區(qū)有_____戶家庭的年收入低于1.3萬元?
【答案】1.2 1.3 1.6 中位數(shù) 660
【解析】
(1)根據(jù)眾數(shù)和中位數(shù)的定義分別進(jìn)行解答即可;
(2)根據(jù)加權(quán)平均數(shù)的計算公式分別進(jìn)行計算即可;
(3)根據(jù)平均數(shù),中位數(shù)兩數(shù)的意義分別進(jìn)行分析,即可得出答案;
(4)用總戶數(shù)乘以200戶中家庭的年收入低于1.3萬元所占的百分比即可求得答案.
解:(1)因為共有20個數(shù),數(shù)據(jù)中的第10和11個數(shù)據(jù)的平均數(shù)是中位數(shù),所以中位數(shù)是1.2(萬元);
(2)根據(jù)圖示可知:平均收入為(20×0.05×0.6+20×0.05×0.9+20×0.1×1.0+20×0.15×1.1+20×0.2×1.2+20×0.25×1.3+20×0.15×1.4+20×0.05×9.7)÷20=32÷20=1.6(萬元);
因為眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),所以眾數(shù)是1.3(萬元);
(3)在平均數(shù),中位數(shù)兩數(shù)中平均數(shù)受到極端值的影響較大,所以中位數(shù)更能反映這個地區(qū)家庭的年收入水平;
(4)1200×(5%+5%+10%+15%+20%)=660戶.
故答案是:1.2,1.3;1.6;中位數(shù),660.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)和的圖象相交于點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個交點(diǎn)為,連接,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=BC,∠ACB=90°,點(diǎn)D,E分別在AC,BC上,且CD=CE.
(1)如圖1,求證:∠CAE=∠CBD;
(2)如圖2,F(xiàn)是BD的中點(diǎn),求證:AE⊥CF;
(3)如圖3,F(xiàn),G分別是BD,AE的中點(diǎn),若AC=2,CE=1,求△CGF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)E,F分別為邊AD,BC上的一個動點(diǎn),連接EF,以EF為對稱軸折疊四邊形CDEF,得到四邊形MNFE,點(diǎn)D,C的對應(yīng)點(diǎn)分別為M,N,當(dāng)點(diǎn)N恰好落在AB的三等分點(diǎn)時,CF的長為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.為了解一批燈泡的使用壽命,宜采用普查方式
B.擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣都是正面朝上這一事件發(fā)生的概率為
C.擲一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動后,5點(diǎn)朝上是必然事件
D.甲乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c與x軸交于A,B兩點(diǎn)(點(diǎn)A在B左邊),與y軸交于點(diǎn)C.
(1)如圖1,已知A(﹣1,0),B(3,0).
①直接寫出拋物線的解析式;
②點(diǎn)H在x軸上,D(1,0),連接AC,DC,HC,若CD平分∠ACH,求點(diǎn)H的坐標(biāo);
(2)如圖2,直線y=﹣1與拋物線y=﹣x2+bx+c交于點(diǎn)D,點(diǎn)E,D關(guān)于x軸對稱.
①若點(diǎn)D在拋物線對稱軸的右側(cè),求證:DB⊥AE;
②若點(diǎn)D在拋物線對稱軸的左側(cè),請直接判斷,BD是否垂直AE?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】劉徵是我國古代最杰出的數(shù)學(xué)家之一,他在《九算術(shù)圓田術(shù))中用“割圓術(shù)”證明了圓面積的精確公式,并給出了計算圓周率的科學(xué)方法(注:圓周率=圓的周長與該圓直徑的比值)“割圓術(shù)”就是以“圓內(nèi)接正多邊形的面積”,來無限逼近“圓面積”,劉徽形容他的“割圓術(shù)”說:割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣.劉徽計算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑R.此時圓內(nèi)接正六邊形的周長為6R,如果將圓內(nèi)接正六邊形的周長等同于圓的周長,可得圓周率為3.當(dāng)正十二邊形內(nèi)接于圓時,如果按照上述方法計算,可得圓周率為_____.(參考數(shù)據(jù):sinl5°=0.26)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】截至北京時間2020年3月26日11:30,全球新冠肺炎確診病例突破47萬例,已有60個國家宣布進(jìn)入緊急狀態(tài),國外較多醫(yī)護(hù)人員不得不重復(fù)使用一次性口罩和防護(hù)裝備.深圳海王星辰福田某藥店購進(jìn)A、B兩種一次性口罩共1500個,已知購進(jìn)A種一次性口罩和B種一次性口罩的費(fèi)用分別為3000元和2000元,且A種一次性口罩的單價比B種一次性口罩單價多1元,求A、B兩種一次性口罩的單價各是多少?設(shè)A種一次性口罩單價為x元,根據(jù)題意,列方程正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設(shè)他出地鐵的站點(diǎn)與文化宮站的距離為(單位:km),乘坐地鐵的時間(單位:min)是關(guān)于的一次函數(shù),其關(guān)系如下表:
地鐵站 | A | B | C | D | E |
x/km | 7 | 9 | 11 | 12 | 13 |
y1/min | 16 | 20 | 24 | 26 | 28 |
(1)求關(guān)于的函數(shù)解析式;
(2)李華騎單車的時間(單位:min)也受的影響,其關(guān)系可以用=2-11+78來描述.求李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮站回到家所需的時間最短,并求出最時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com