【題目】如圖,四邊形ABCD為菱形,MBC上一點(diǎn),連接AM交對(duì)角線BD于點(diǎn)G,并且∠ABM=2∠BAM

1)求證:AG=BG

2)若點(diǎn)MBC的中點(diǎn),同時(shí)SBMG=1,求三角形ADG的面積.

【答案】1)證明見試題解析;(24

【解析】

試題(1)由菱形的對(duì)角線平分一組對(duì)角,得出∠ABD=∠CBD,再由∠ABM=2∠BAM,得出∠ABD=∠BAM,即可得出結(jié)論.

2)由相似三角形面積的比等于相似比的平方即可求得.

試題解析:(1四邊形ABCD是菱形,∴∠ABD=∠CBD,∵∠ABM=2∠BAM∴∠ABD=∠BAM,∴AG=BG;

2∵AD∥BC,∴△ADG∽△MBG,點(diǎn)MBC的中點(diǎn),=2=4,∵SBMG=1∴SADG=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)閱讀下列材料:已知方程x2+x﹣3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.

解:設(shè)所求方程的根為y,則y=2x.所以x=

x=代入已知方程,得(2+﹣3=0,化簡(jiǎn),得y2+2y﹣12=0.

故所求方程為y2+2y﹣12=0.

這種利用方程根的代換求新方程的方法,我們稱為“換根法”.

問題:已知方程x2+x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的3倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,于點(diǎn)的中點(diǎn),于點(diǎn)

1)當(dāng)時(shí),求的值;

2)當(dāng)時(shí),求的值;問要寫出解答過程)

3)當(dāng)時(shí),求的值.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的外接圓,AB為直徑,∠BAC的平分線交于點(diǎn)D,過點(diǎn)D作DEAC分別交AC、AB的延長(zhǎng)線于點(diǎn)E、F.

(1)求證:EF是的切線;

(2)若AC=4,CE=2,求的長(zhǎng)度.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,下列條件中,不能判斷這個(gè)平行四邊形是菱形的是(

A. AB=ADB. BAC=DACC. BAC=ABDD. ACBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.

(1)如圖1,已知折痕與邊BC交于點(diǎn)O,連接APOP、OA.若OCPPDA的面積比為1:4,求邊CD的長(zhǎng).

(2)如圖2,在(1)的條件下,擦去折痕AO、線段OP,連接BP.動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MNPB于點(diǎn)F,作MEBP于點(diǎn)E.試問當(dāng)動(dòng)點(diǎn)M、N在移動(dòng)的過程中,線段EF的長(zhǎng)度是否發(fā)生變化?若變化,說明變化規(guī)律.若不變,求出線段EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸交于C點(diǎn),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),且點(diǎn)A的橫坐標(biāo)為-1

1)求a的值;

2)設(shè)拋物線的頂點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,求點(diǎn)的坐標(biāo);

3)將拋物線在A,B兩點(diǎn)之間的部分(包括AB兩點(diǎn)),先向下平移3個(gè)單位,再向左平移m)個(gè)單位,平移后的圖象記為圖象G,若圖象G與直線無交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0,a,b,c為常數(shù))圖象如圖所示,根據(jù)圖象解答問題.

(1)寫出過程ax2+bx+c=0的兩個(gè)根.

(2)寫出不等式ax2+bx+c>0的解集.

(3)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇正在參加全國(guó)數(shù)學(xué)競(jìng)賽,只要他再答對(duì)最后兩道單選題就能順利過關(guān),其中第一道題有3個(gè)選項(xiàng),第二道題有4個(gè)選項(xiàng),而這兩道題嘉淇都不會(huì),不過嘉淇還有一次求助沒有使用(使用求助可讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

1)如果嘉淇第一題不使用求助,隨機(jī)選擇一個(gè)選項(xiàng),那么嘉淇答對(duì)第一道題的概率是多少?

2)若嘉淇將求助留在第二題使用,請(qǐng)用畫樹狀圖或列表法求嘉淇能順利過關(guān)的概率;

3)請(qǐng)你從概率的角度分析,建議嘉洪在第幾題使用求助,才能使他過關(guān)的概率較大.

查看答案和解析>>

同步練習(xí)冊(cè)答案