【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.
(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.若△OCP與△PDA的面積比為1:4,求邊CD的長.
(2)如圖2,在(1)的條件下,擦去折痕AO、線段OP,連接BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問當動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若變化,說明變化規(guī)律.若不變,求出線段EF的長度.
【答案】(1)10;(2).
【解析】
(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=AD=4,設(shè)OP=x,則CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42,求出x,最后根據(jù)AB=2OP即可求出邊AB的長;
(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結(jié)論求出PB=,最后代入EF=PB即可得出線段EF的長度不變
(1)如圖1,∵四邊形ABCD是矩形,
∴∠C=∠D=90°,
∴∠1+∠3=90°,
∵由折疊可得∠APO=∠B=90°,
∴∠1+∠2=90°,∴∠2=∠3,
又∵∠D=∠C,
∴△OCP∽△PDA;
∵△OCP與△PDA的面積比為1:4,
∴ ,∴ CP=AD=4
設(shè)OP=x,則CO=8﹣x,
在Rt△PCO中,∠C=90°,由勾股定理得 x2=(8﹣x)2+42,
解得:x=5,∴AB=AP=2OP=10,∴邊CD的長為10;
(2)作MQ∥AN,交PB于點Q,如圖2,
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,
∴BN=QM.
∵MP=MQ,ME⊥PQ,
∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,
∴△MFQ≌△NFB.
∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,
由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,
∴PB=,∴EF=PB=2,
∴在(1)的條件下,當點M、N在移動過程中,線段EF的長度不變,它的長度為2.
科目:初中數(shù)學 來源: 題型:
【題目】[問題提出]
如圖①,在△ABC中,若AB=6,AC=4,求BC邊上的中線AD的取值范圍.
[問題解決]
解決此問題可以用如下方法,延長AD到點E使DE=AD,再連結(jié)BE(或?qū)?/span>△ACD繞著點D逆時針裝轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷,由此得出中線AD的取值范圍是
[應用]
如圖②,如圖,在△ABC中,D為邊BC的中點,已知AB=5,AC=3,AD=2.求BC的長
[拓展]
如圖③,在△ABC中,∠A=90°,點D是邊BC的中點,點E在邊AB上,過點D作DF⊥DE交邊AC于點F,連結(jié)EF,已知BE=4,CF=5,則EF的長為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)戶承包荒山種植某產(chǎn)品種蜜柚已知該蜜柚的成本價為8元千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷量千克與銷售單價元千克之間的函數(shù)關(guān)系如圖所示.
求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春平中學要為學?萍蓟顒有〗M提供實驗器材,計劃購買A型、B型兩種型號的放大鏡.若購買8個A型放大鏡和5個B型放大鏡需用220元;若購買4個A型放大鏡和6個B型放大鏡需用152元.
(1)求每個A型放大鏡和每個B型放大鏡各多少元;
(2)春平中學決定購買A型放大鏡和B型放大鏡共75個,總費用不超過1180元,那么最多可以購買多少個A型放大鏡?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD∥BC,AB⊥BC,AB=3.點E為射線 BC上一個動點,連接AE,將△ABE沿AE折疊,點B落在點B′處,過點B′作AD的垂線,分別交AD,BC于點M,N.當點B′為線段MN的三等分點時,BE的長為__________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給定關(guān)于的二次函數(shù) ,
學生甲:當時,拋物線與 軸只有一個交點,因此當拋物線與軸只有一個交點時,的值為3;
學生乙:如果拋物線在軸上方,那么該拋物線的最低點一定在第二象限;
請判斷學生甲、乙的觀點是否正確,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F分別為邊AB,CD的中點,BD⊥AD.
(1)求證:四邊形BEDF是菱形;
(2)作AG⊥CB于G,若AD=1,AG=2,求sinC的值;
(3)若(2)中的四邊形AGCD為一不可卷折的板材,問該板材能否通過一直徑為1.8的圓洞門?請計算說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八年級6班的一個互助學習小組組長收集并整理了組員們討論如下問題時所需的條件:如圖所示,在四邊形ABCD中,點E、F分別在邊BC、AD上,____,求證:四邊形AECF是平行四邊形. 你能在橫線上填上最少且簡捷的條件使結(jié)論成立嗎?
條件分別是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四邊形ABCD是平行四邊形.
其中A、B、C、D四位同學所填條件符合題目要求的是( 。
A. ①②③④B. ①②③C. ①④D. ④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017湖北省鄂州市,第8題,3分)小東家與學校之間是一條筆直的公路,早飯后,小東步行前往學校,圖中發(fā)現(xiàn)忘帶畫板,停下給媽媽打電話,媽媽接到電話后,帶上畫板馬上趕往學校,同時小東沿原路返回,兩人相遇后,小東立即趕往學校,媽媽沿原路返回16min到家,再過5min小東到達學校,小東始終以100m/min的速度步行,小東和媽媽的距離y(單位:m)與小東打完電話后的步行時間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列四種說法:
①打電話時,小東和媽媽的距離為1400米;
②小東和媽媽相遇后,媽媽回家的速度為50m/min;
③小東打完電話后,經(jīng)過27min到達學校;
④小東家離學校的距離為2900m.
其中正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com