【題目】如圖,已知直線y=﹣2x經過點P(﹣2,a),點P關于y軸的對稱點P′在反比例函數(shù) (k≠0)的圖象上.

(1)求a的值;
(2)直接寫出點P′的坐標;
(3)求反比例函數(shù)的解析式.

【答案】
(1)

解:把(﹣2,a)代入y=﹣2x中,得a=﹣2×(﹣2)=4,

∴a=4;


(2)

解:∵P點的坐標是(﹣2,4),

∴點P關于y軸的對稱點P′的坐標是(2,4);


(3)

解:把P′(2,4)代入函數(shù)式y(tǒng)= ,

得4=

∴k=8,

∴反比例函數(shù)的解析式是y=


【解析】(1)把(﹣2,a)代入y=﹣2x中即可求a;(2)坐標系中任一點關于y軸對稱的點的坐標,其中橫坐標等于原來點橫坐標的相反數(shù),縱坐標不變;(3)把P′代入y= 中,求出k,即可得出反比例函數(shù)的解析式.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列結論: ①a<0,②b<0,③c<0,
其中正確的判斷是(

A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠CAB=70°,將△ABC在平面內繞點A旋轉到△AB′C′的位置,使CC′∥AB,則旋轉角的度數(shù)為(
A.35°
B.40°
C.50°
D.70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年4月23日,是第16個世界讀書日.某校為了解學生每周課余自主閱讀的時間,在本校隨機抽取若干名學生進行問卷調查,現(xiàn)將調查結果繪制成如圖不完整的統(tǒng)計圖表,請根據圖表中的信息解答下列問題

組別

學習時間x(h)

頻數(shù)(人數(shù))

A

0<x≤1

8

B

1<x≤2

24

C

2<x≤3

32

D

3<x≤4

n

E

4小時以上

4


(1)表中的n= , 中位數(shù)落在組,扇形統(tǒng)計圖中B組對應的圓心角為°;
(2)請補全頻數(shù)分布直方圖;
(3)該校準備召開利用課余時間進行自主閱讀的交流會,計劃在E組學生中隨機選出兩人進行經驗介紹,已知E組的四名學生中,七、八年級各有1人,九年級有2人,請用畫樹狀圖法或列表法求抽取的兩名學生都來自九年級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一個等腰Rt△ABC對折,使∠A與∠B重合,展開后得折痕CD,再將∠A折疊,使C落在AB上的點F處,展開后,折痕AE交CD于點P,連接PF、EF,下列結論:①tan∠CAE= ﹣1;②圖中共有4對全等三角形;③若將△PEF沿PF翻折,則點E一定落在AB上;④PC=EC;⑤S四邊形DFEP=SAPF . 正確的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,
①BC與CF的位置關系為:
②BC,CD,CF之間的數(shù)量關系為:;(將結論直接寫在橫線上)

(2)數(shù)學思考
如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.

(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2 ,CD= BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年6月,某中學結合廣西中小學閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調查,收集整理數(shù)據后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據圖1和圖2提供的信息,解答下列問題:

(1)在這次抽樣調查中,一共調查了多少名學生?
(2)請把折線統(tǒng)計圖(圖1)補充完整;
(3)求出扇形統(tǒng)計圖(圖2)中,體育部分所對應的圓心角的度數(shù);
(4)如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣ x+2與y軸交于點A,頂點為B.點P是x軸上的一個動點,當點P的坐標是時,|PA﹣PB|取得最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°.
(1)用尺規(guī)作圖作AB邊上的垂直平分線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明)
(2)連接BD,求證:DE=CD.

查看答案和解析>>

同步練習冊答案