【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,
①BC與CF的位置關系為: .
②BC,CD,CF之間的數(shù)量關系為:;(將結論直接寫在橫線上)
(2)數(shù)學思考
如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.
(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2 ,CD= BC,請求出GE的長.
【答案】
(1)垂直;BC=CD+CF
(2)
解:CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.
∵正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB與△FAC中, ,
∴△DAB≌△FAC,
∴∠ABD=∠ACF,
∵∠BAC=90°,AB=AC,
∴∠ACB=∠ABC=45°.
∴∠ABD=180°﹣45°=135°,
∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,
∴CF⊥BC.
∵CD=DB+BC,DB=CF,
∴CD=CF+BC.
(3)
解:過A作AH⊥BC于H,過E作EM⊥BD于M,EN⊥CF于N,
∵∠BAC=90°,AB=AC,
∴BC= AB=4,AH= BC=2,
∴CD= BC=1,CH= BC=2,
∴DH=3,
由(2)證得BC⊥CF,CF=BD=5,
∵四邊形ADEF是正方形,
∴AD=DE,∠ADE=90°,
∵BC⊥CF,EM⊥BD,EN⊥CF,
∴四邊形CMEN是矩形,
∴NE=CM,EM=CN,
∵∠AHD=∠ADE=∠EMD=90°,
∴∠ADH+∠EDM=∠EDM+∠DEM=90°,
∴∠ADH=∠DEM,
在△ADH與△DEM中, ,
∴△ADH≌△DEM,
∴EM=DH=3,DM=AH=2,
∴CN=EM=3,EN=CM=3,
∵∠ABC=45°,
∴∠BGC=45°,
∴△BCG是等腰直角三角形,
∴CG=BC=4,
∴GN=1,
∴EG= = .
【解析】解:(1)①正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB與△FAC中, ,
∴△DAB≌△FAC,
∴∠B=∠ACF,
∴∠ACB+∠ACF=90°,即BC⊥CF;
故答案為:垂直;②△DAB≌△FAC,
∴CF=BD,
∵BC=BD+CD,
∴BC=CF+CD;
故答案為:BC=CF+CD;
(1)①根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結論;②由正方形ADEF的性質(zhì)可推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)得到CF=BD,∠ACF=∠ABD,根據(jù)余角的性質(zhì)即可得到結論;(2)根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)以及等腰直角三角形的角的性質(zhì)可得到結論.(3)根據(jù)等腰直角三角形的性質(zhì)得到BC= AB=4,AH= BC=2,求得DH=3,根據(jù)正方形的性質(zhì)得到AD=DE,∠ADE=90°,根據(jù)矩形的性質(zhì)得到NE=CM,EM=CN,由角的性質(zhì)得到∠ADH=∠DEM,根據(jù)全等三角形的性質(zhì)得到EM=DH=3,DM=AH=2,等量代換得到CN=EM=3,EN=CM=3,根據(jù)等腰直角三角形的性質(zhì)得到CG=BC=4,根據(jù)勾股定理即可得到結論.
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題: A、B兩地的距離是80公里,一輛公共汽車從A地駛出3小時后,一輛小汽車也從A地出發(fā),它的速度是公共汽車的3倍,已知小汽車比公共汽車遲20分鐘到達B地,求兩車的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=90°
(1)請用圓規(guī)和直尺作出⊙P,使圓心P在AC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明).
(2)若∠B=60°,AB=3,求⊙P的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、C是圓O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于( )
A.12.5°
B.15°
C.20°
D.22.5°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣2x經(jīng)過點P(﹣2,a),點P關于y軸的對稱點P′在反比例函數(shù) (k≠0)的圖象上.
(1)求a的值;
(2)直接寫出點P′的坐標;
(3)求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下是一位同學所做的實數(shù)運算解題過程的一部分. ﹣ ﹣|﹣1|2017﹣(π﹣3.14)0+4cos60°
=﹣ +1﹣1+4× .
(1)指出上面解答過程中的錯誤,并寫出正確的解答過程;
(2)若分式方程 +1= 的解與(1)中的最終結果相同,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為2的等邊△OAB放置于平面直角坐標系xOy中,C是AB邊上的一個點(不與端點A、B重合),作CD⊥OB于點D,若點C、D都在雙曲線y= 上(k>0,x>0),則k的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校準備購進一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;
(2)學校準備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與E重合),點B、C(E)、F在同一條直線上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點A出發(fā),以2cm/s的速度沿AB向點B勻速移動;當點P移動到點B時,點P停止移動,△DEF也隨之停止移動.DE與AC交于點Q,連接PQ,設移動時間為t(s).
(1)用含t的代數(shù)式表示線段AP和AQ的長,并寫出t的取值范圍;
(2)連接PE,設四邊形APEQ的面積為y(cm2),試探究y的最大值;
(3)當t為何值時,△APQ是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com