【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N.下列結論:①AF⊥BG;②BN=NF;③;④.其中正確的結論的序號是______.
【答案】①③.
【解析】
①易證△ABF≌△BCG,即可解題;
②易證△BNF∽△BCG,即可求得的值,即可解題;
③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解題;
④連接AG,F(xiàn)G,根據(jù)③中結論即可求得S四邊形CGNF和S四邊形ANGD,即可解題.
①∵四邊形ABCD為正方形,
∴AB=BC=CD,
∵BE=EF=FC,CG=2GD,
∴BF=CG,
∵在△ABF和△BCG中,
,
∴△ABF≌△BCG,
∴∠BAF=∠CBG,
∵∠BAF+∠BFA=90°,
∴∠CBG+∠BFA=90°,即AF⊥BG;①正確;
②∵在△BNF和△BCG中,∠CBG=∠NBF,∠BCG=∠BNF=90°,
∴△BNF∽△BCG,
∴,
∴BN=NF;②錯誤;
③作EH⊥AF,令AB=3,則BF=2,BE=EF=CF=1,
AF==,
∵S△ABF=AFBN=ABBF,
∴BN=,NF=BN=,
∴AN=AF-NF=,
∵E是BF中點,
∴EH是△BFN的中位線,
∴EH=,NH=,BN∥EH,
∴AH=,
,解得:MN=,
∴BM=BN-MN=,MG=BG-BM=,
∴;③正確;
④連接AG,F(xiàn)G,根據(jù)③中結論,
則NG=BG-BN=,
∵S四邊形CGNF=S△CFG+S△GNF=CGCF+NFNG=1+=,
S四邊形ANGD=S△ANG+S△ADG=ANGN+ADDG=,
∴S四邊形CGNF≠S四邊形ANGD,④錯誤.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】某小組做“用頻率估計概率”的試驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計圖,則符合這一結果的試驗最有可能的是( )
A. 在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
B. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C. 暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D. 擲一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖,ABCD中,點E,F(xiàn)在直線AC上(點E在F左側(cè)),BE∥DF.
(1)求證:四邊形BEDF是平行四邊形;
(2)若AB⊥AC,AB=4,BC=,當四邊形BEDF為矩形時,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列方程是關于x的一元二次方程的是( )
A. ax2+bx+c=0 B. =2 C. x2+2x=y(tǒng)2-1 D. 3(x+1)2=2(x+1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD為∠BAC的平分線,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC交AC的延長線于F.
(1)求證:BE=CF;
(2)如果AB=7,AC=5,求AE,BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)的圖象于點B,.
求反比例函數(shù)的解析式;
若、是該反比例函數(shù)圖象上的兩點,且時,,指出點P、Q各位于哪個象限?并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點E在BA的延長線上,點D在BC邊上,且ED=EC,若△ABC的邊長為4,AE=2,則BD的長為( )
A. 2 B. 3 C. D. +1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠CBD、∠BCE是△ABC的外角,BP平分∠ABC,CP平分∠ACB,BQ平分∠CBD,CQ平分∠BCE.
(1)∠PBQ的度數(shù)是 ,∠PCQ的度數(shù)是 ;
(2)若∠A=70°,求∠P和∠Q的度數(shù);
(3)若∠A=α,則∠P= ,∠Q= (用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交AB、AC于點D、E.
(1)若∠A = 40°,求∠DCB的度數(shù).
(2)若AE=4,△DCB的周長為14,求△ABC的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com