【題目】在圓O中,C是弦AB上的一點(diǎn),聯(lián)結(jié)OC并延長,交劣弧AB于點(diǎn)D,聯(lián)結(jié)AO、BO、AD、BD. 已知圓O的半徑長為5 ,弦AB的長為8.
(1)如圖1,當(dāng)點(diǎn)D是弧AB的中點(diǎn)時,求CD的長;
(2)如圖2,設(shè)AC=x, ,求y關(guān)于x的函數(shù)解析式并寫出定義域;
(3)若四邊形AOBD是梯形,求AD的長.
【答案】(1)2(2)y=(0<x<8)(3)或6
【解析】試題分析:
(1)由已知條件易得OD⊥AB,AC=AB=4,結(jié)合AO=5,由勾股定理可得OC=3,結(jié)合OD=5可得CD=2;
(2)如下圖,過點(diǎn)O作OH⊥AB于點(diǎn)H,則由(1)可得OH=3,AH=4,結(jié)合AC=x可得CH=,在Rt△HOC中,由勾股定理可得OC=,結(jié)合即可得到所求關(guān)系式;
(3)若四邊形AOBD是梯形,則有OB∥AD或OA∥BD兩種情況,①當(dāng)OB//AD時,如下圖,過點(diǎn)A作AE⊥OB交BO延長線于點(diǎn)E,過點(diǎn)O作OF⊥AD,垂足為點(diǎn)F,則OF=AE,結(jié)合S△ABO=AB·OH=OB·AE可得AE= ,然后在Rt△AOF中由勾股定理即可求得AF的長,這樣就可由垂徑定理求得AD的長了;②當(dāng)OA//BD時,如下圖,過點(diǎn)B作BM⊥OA交AO延長線于點(diǎn)M,過點(diǎn)D作DG⊥AO,垂足為點(diǎn)G,則由①的方法同理可求得對應(yīng)的AD的長.
試題解析:
(1)∵OD過圓心,點(diǎn)D是弧AB的中點(diǎn),AB=8,
∴OD⊥AB,AC=AB=4,
在Rt△AOC中,∵∠ACO=90°,AO=5,
∴CO=,
∴CD=OD-OC=5-3=2;
(2)過點(diǎn)O作OH⊥AB,垂足為點(diǎn)H,則由(1)可得AH=4,OH=3
∵AC=x,
∴CH=,
在Rt△HOC中,∵∠CHO=90°,AO=5,
∴OC=,
∵,
∴
(3)若四邊形AOBD是梯形,則有OB∥AD或OA∥BD兩種情況,現(xiàn)分別討論如下:
①當(dāng)OB//AD時,如下圖,過點(diǎn)A作AE⊥OB交BO延長線于點(diǎn)E,過點(diǎn)O作OF⊥AD,垂足為點(diǎn)F,則OF=AE,
∵S△ABO=AB·OH=OB·AE,
∴AE=
在Rt△AOF中,∵∠AFO=90°,AO=5,
∴AF=,
∵OF過圓心,OF⊥AD,
∴AD=2AF=;
②當(dāng)OA//BD時,如下圖,過點(diǎn)B作BM⊥OA交AO延長線于點(diǎn)M,過點(diǎn)D作DG⊥AO,垂足為點(diǎn)G,
則由①的方法同理可得AD=6;
綜上所述AD=或6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5 , x6的平均數(shù)是2,方差是2,則另一組數(shù)據(jù)3x1-2 , 3x2-2 , 3x3-2 , 3x4-2 , 3x5-2 , 3x6-2的平均數(shù)和方差分別是( ).
A.2, 2 B.2, 18 C.4, 6 D.4, 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)實(shí)踐活動中,觀測小組對某品牌節(jié)能飲水機(jī)進(jìn)行了觀察和記錄,當(dāng)觀察到第分鐘時,水溫為,記錄的相關(guān)數(shù)據(jù)如下表所示:
第一次加熱、降溫過程 | … | |||||||||||
t(分鐘) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | … |
y() | 20 | 40 | 60 | 80 | 100 | 80 | 66.7 | 57.1 | 50 | 44.4 | 40 | … |
(飲水機(jī)功能說明:水溫加熱到時飲水機(jī)停止加熱,水溫開始下降,當(dāng)降到時飲水機(jī)又自動開始加熱)
請根據(jù)上述信息解決下列問題:
(1)根據(jù)表中數(shù)據(jù)在如給出的坐標(biāo)系中,描出相應(yīng)的點(diǎn);
(2)選擇適當(dāng)?shù)暮瘮?shù),分別求出第一次加熱過程和第一次降溫過程關(guān)于的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍;
(3)已知沏茶的最佳水溫是,若18:00開啟飲水機(jī)(初始水溫)到當(dāng)晚20:10,沏茶的最佳水溫時間共有多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線BD的長為1,點(diǎn)P是線段BD上的一點(diǎn),聯(lián)結(jié)CP,將△BCP沿著直線CP翻折,若點(diǎn)B落在邊AD上的點(diǎn)E處,且EP//AB,則AB的長等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某施工小組乘-輛汽車在東西走向的公路上進(jìn)行建設(shè),約定向東走為正,某大從地出發(fā)到收工時的行走記錄如下(單位: );,,求:
(1)問收工時施工小組是否回到地,如果回到地,請說明理由;如果沒有回到地,請說明檢修小組最后的位置:
(2)距離地最遠(yuǎn)的是哪一次?距離多遠(yuǎn)?
(3)若汽車每千米耗油升,開工時儲油升,到收工時,中途是否需要加油,若加油最少加多少升?若不需要加油,到收工時,還剩多少升汽油? (假定汽車可以開到油量為)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.
(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)E是AC的一點(diǎn),連接EB,過點(diǎn)A做AM⊥BE,垂足為M,AM與BD相交于點(diǎn)F.
(1)猜想:如圖(1)線段OE與線段OF的數(shù)量關(guān)系為 ;
(2)拓展:如圖(2),若點(diǎn)E在AC的延長線上,AM⊥BE于點(diǎn)M,AM、DB的延長線相交于點(diǎn)F,其他條件不變,(1)的結(jié)論還成立嗎?如果成立,請僅就圖(2)給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD、等腰Rt△BPQ的頂點(diǎn)P在對角線AC上(點(diǎn)P與A、C不重合),QP與BC交于E,QP延長線與AD交于點(diǎn)F,連接CQ.
(1)①求證:AP=CQ;②求證:PA2=AFAD;
(2)若AP:PC=1:3,求tan∠CBQ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com