精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,點EAC的一點,連接EB,過點AAMBE,垂足為M,AMBD相交于點F

1)猜想:如圖(1)線段OE與線段OF的數量關系為   ;

2)拓展:如圖(2),若點EAC的延長線上,AMBE于點M,AM、DB的延長線相交于點F,其他條件不變,(1)的結論還成立嗎?如果成立,請僅就圖(2)給出證明;如果不成立,請說明理由.

【答案】1;2)成立.理由見解析.

【解析】

1)根據正方形的性質對角線垂直且平分,得到OB=OA,又因為AMBE,所以∠MEA+MAE=90°=AFO+MAE,從而求證出RtBOERtAOF,得到OE=OF.

2)根據第一步得到的結果以及正方形的性質得到OB=OA,再根據已知條件求證出RtBOERtAOF,得到OE=OF.

解:(1)正方形ABCD的對角線ACBD相交于點O,AMBE,

∴∠AOB=BOE=AMB=90°,

∵∠AFO=BFM(對頂角相等),

∴∠OAF=OBE(等角的余角相等),

OA=OB(正方形的對角線互相垂直平分且相等),

∴△BOE≌△AOFASA),

OE=OF.

故答案為:OE=OF;

2)成立.理由如下:

證明:∵四邊形是正方形,

,

又∵

,,

又∵

,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點A(1,0),B(4,1),C(4,3),反比例函數y=的圖象經過點D,點P是一次函數y=mx+3﹣4m(m≠0)的圖象與該反比例函數圖象的一個公共點;

(1)求反比例函數的解析式;

(2)通過計算說明一次函數y=mx+3﹣4m的圖象一定過點C;

(3)對于一次函數y=mx+3﹣4m(m≠0),當y隨x的增大而增大時,確定點P的橫坐標的取值范圍,(不必寫過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】市某中學開展以三創(chuàng)一辦為中心,以校園文明為主題的手抄報比賽.同學們積極參與,參賽同學每人交了一份得意作品,所有參賽作品均獲獎,獎項分為一等獎、二等獎、三等獎和優(yōu)秀獎,將獲獎結果繪制成如下兩幅統(tǒng)計圖.請你根據圖中所給信息解答下列問題:

(1)一等獎所占的百分比是__________.

(2)在此次比賽中,一共收到多少份參賽作品?請將條形統(tǒng)計圖補充完整.

(3)各獎項獲獎學生分別有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某施工小組乘-輛汽車在東西走向的公路上進行建設,約定向東走為正,某大從地出發(fā)到收工時的行走記錄如下(單位: );,,:

1)問收工時施工小組是否回到地,如果回到地,請說明理由;如果沒有回到地,請說明檢修小組最后的位置:

2)距離地最遠的是哪一次?距離多遠?

3)若汽車每千米耗油升,開工時儲油升,到收工時,中途是否需要加油,若加油最少加多少升?若不需要加油,到收工時,還剩多少升汽油? (假定汽車可以開到油量為)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD,CEFG按如圖放置,點B,C,E在同一條直線上,點P在BC邊上,PA=PF,且∠APF=90°,連接AF交CD于點M,有下列結論:①EC=BP;②AP=AM;③∠BAP=∠GFP;④AB2+CE2AF2;⑤S正方形ABCD+S正方形CEFG=2S△APF.其中正確的是(  )

A. ①②③ B. ①③④ C. ①②④⑤ D. ①③④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,較大的半圓半徑,較小的半圓半徑,求陰影部分的周長和面積.(π取3.14)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算(1

2)計算,嘉嘉同學的計算過程如下:

原式

請你判斷嘉嘉的計算過程是否正確,若不正確,請寫出正確的計算過程.

(3)定義一種運算:觀察下列各式: ,

①請你想一想:

②若,那么 填或

③先化簡,在求值:其中

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調控的手段達到節(jié)水的目的,該市自來水收費的價目表如下表(注:水費按月份結算,表示立方米).

每月用水量

單價

不超過的部分

2/

超出不超出

4/

超出的部分

8/

請根據上表的內容解答下列問題:

1)若某戶居民2月份用水,則應收水費_________.元

2)若該戶居民3月份用水(其中),則應收水費多少元(用含a的代數式表示,并簡化).

3)若該戶居民4,5兩個月共用水5月份用水量超過了4月份),設4月份,用水,則該戶居民4,5兩個月共交水費多少元(用含x的代數式表示,并簡化).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=ax2+bx+3a0)經過點A1,0),B0),且與y軸相交于點C

(1)求這條拋物線的表達式;

(2)求∠ACB的度數;

(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DEAC,當△DCE與△AOC相似時,求點D的坐標.

查看答案和解析>>

同步練習冊答案