【題目】如圖,AD是△ABC的角平分線,添加下列條件能使△ABD≌△ACD的是( )
①AB=AC;②AB=AD;③∠ADB=90°;④BD=CD.
A.①②③B.①②④C.①③D.①③④
【答案】C
【解析】
根據(jù)AD是△ABC的角平分線,并是△BAD,△CAD的公共邊,即有一個角和一條邊對應(yīng)相等這兩個條件,根據(jù)全等三角形的判定定理,只需要在添加一個鄰角或者對角,或者一條夾邊即可判斷兩個三角形全等,以此來判斷即可得到結(jié)果.
解:∵AD是△ABC的角平分線,
∴,并是△BAD,△CAD的公共邊,
當添加①AB=AC時,可用SAS證明△ABD≌△ACD;
當添加②AB=AD時,無法證明△ABD≌△ACD;
當添加③∠ADB=90°時,∠ADB=∠ADC=90°,可用ASA證明△ABD≌△ACD;
當添加④BD=CD時,無法證明△ABD≌△ACD.
綜上所述,正確的只有①③.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一張三角形紙片ABC,其中∠BAC=60°,BC=6,點D是BC邊上一動點,將BD,CD翻折使得B′,C′分別落在AB,AC邊上,(B與B′,C與C′分別對應(yīng)),點D從點B運動至點C,△B′C′D面積的大小變化情況是( 。
A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB于點E.
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點P,下列說法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正確的個數(shù)有( )個。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線經(jīng)過點A(,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當=時,DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中.
利用尺規(guī)作圖,在BC邊上求作一點P,使得點P到AB的距離的長等于PC的長;
利用尺規(guī)作圖,作出中的線段PD.
要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點G是BC邊上任意一點,DE⊥AG于點E,BF∥DE且交AG于點F.
(1)如圖1,求證:AE=BF;
(2)連接DF,若tan∠BAG=,AB=2,求△ADF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com