【題目】已知二次函數(shù)yx22x3,若線段ABx軸上,且AB2個單位長度,以AB為邊作等邊ABC,使點C落在該函數(shù)y軸右側(cè)的圖象上,則點C的坐標(biāo)為( 。

A. 1+,3)或(2,﹣3B. 13)或(2,3

C. (﹣1+,﹣3)或(2,﹣3D. 1+,﹣3)或(23

【答案】A

【解析】

ABC是等邊三角形,且邊長為2,所以該等邊三角形的高為3,又點C在二次函數(shù)上,所以令y±3代入解析式中,分別求出x的值.由因為使點C落在該函數(shù)y軸右側(cè)的圖象上,所以x0

解:∵△ABC是等邊三角形,且AB2,

AB邊上的高為3,

又∵點C在二次函數(shù)圖象上,

C的縱坐標(biāo)為±3,

y±3代入yx22x3

x02

∵使點C落在該函數(shù)y軸右側(cè)的圖象上,

x0,

x1+x2

C1+,3)或(2,﹣3

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形中,,一個三角尺的直角頂點與邊的中點重合,且兩條直角邊分別經(jīng)過點和點,將三角尺繞點按順時針方向旋轉(zhuǎn)任意一個銳角,當(dāng)三角尺的兩直角邊與,分別交于點,時,下列結(jié)論中錯誤的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是一張放在平面直角坐標(biāo)系中的矩形紙片,點軸上,點軸上,將邊折疊,使點落在邊的點處.已知折疊,且

(1)判斷是否相似?請說明理由;

(2)求直線軸交點的坐標(biāo);

(3)是否存在過點的直線,使直線、直線軸所圍成的三角形和直線、直線軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=-1,點B的坐標(biāo)為(10),則下列結(jié)論:①AB=4;②b2-4ac0;③ab0;④a2-ab+ac0,其中正確的結(jié)論有( 。﹤.

A. 3B. 4C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,.

1)如圖,點、上,且,求證:.

2)點,分別在直線,上,且.

①如圖,當(dāng)點的延長線上時,求證:

②當(dāng)點在點,之間,且時,已知,直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

1)如圖①,在等腰RtABC中,斜邊AC4,點DAC上一點,連接BD,則BD的最小值為   ;

問題探究

2)如圖②,在ABC中,ABAC5,BC6,點MBC上一點,且BM4,點P是邊AB上一動點,連接PM,將BPM沿PM翻折得到DPM,點D與點B對應(yīng),連接AD,求AD的最小值;

問題解決

3)如圖③,四邊形ABCD是規(guī)劃中的休閑廣場示意圖,其中∠BAD=∠ADC135°,∠DCB30°,AD2km,AB3km,點MBC上一點,MC4km.現(xiàn)計劃在四邊形ABCD內(nèi)選取一點P,把DCP建成商業(yè)活動區(qū),其余部分建成景觀綠化區(qū).為方便進(jìn)入商業(yè)區(qū),需修建小路BP、MP,從實用和美觀的角度,要求滿足∠PMB=∠ABP,且景觀綠化區(qū)面積足夠大,即DCP區(qū)域面積盡可能。畡t在四邊形ABCD內(nèi)是否存在這樣的點P?若存在,請求出DCP面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設(shè)置了區(qū)間測速如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測速,所有車輛限速40千米/小時數(shù)學(xué)實踐活動小組設(shè)計了如下活動:在l上確定A,B兩點,并在AB路段進(jìn)行區(qū)間測速.在l外取一點P,作PCl,垂足為點C.測得PC=30米,∠APC=71°,BPC=35°.上午9時測得一汽車從點A到點B用時6秒,請你用所學(xué)的數(shù)學(xué)知識說明該車是否超速.(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景

如圖(1),在四邊形ABCD中,∠B+D180°,ABAD,∠BADα,以點A為頂點作一個角,角的兩邊分別交BCCD于點EF,且∠EAFα,連接EF,試探究:線段BE,DFEF之間的數(shù)量關(guān)系.

1)特殊情景

在上述條件下,小明增加條件當(dāng)∠BAD=∠B=∠D90°如圖(2),小明很快寫出了:BEDF,EF之間的數(shù)量關(guān)系為______

2)類比猜想

類比特殊情景,小明猜想:在如圖(1)的條件下線段BE,DF,EF之間的數(shù)量關(guān)系是否仍然成立?若成立,請你幫助小明完成證明;若不成立,請說明理由.

3)解決問題

如圖(3),在ABC中,∠BAC90°,ABAC4,點D,E均在邊BC上,且∠DAE45°,若BD,請直接寫出DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,則巡邏船從出發(fā)到成功攔截捕魚船所用的時間是( 。

A. 1小時 B. 2小時 C. 3小時 D. 4小時

查看答案和解析>>

同步練習(xí)冊答案