【題目】已知a2+10b2+c2﹣4ab=a﹣2bc﹣,則a﹣2b+c=_____.
【答案】-14.
【解析】
首先把已知等式進(jìn)行變形,再配方得出(3a-2)2+(18b+2c)2+(12a-6b)2=0,得出3a-2=0,18b+2c=0,12a-6b=0,求出a=,b=,c=-12,即可得出結(jié)果.
a2+10b2+c2﹣4ab=a﹣2bc﹣,
整理得:153a2+360b2+4c2﹣144ab=12a﹣72bc﹣4,
即(9a2﹣12a+4)+(324b2+72b+4c2)+(144a2﹣144ab+36b2)=0,
∴(3a﹣2)2+(18b+2c)2+(12a﹣6b)2=0,
∴3a﹣2=0,18b+2c=0,12a﹣6b=0,
∴a=,b=,c=﹣12,
∴a﹣2b+c=﹣2×﹣12=﹣14,
故答案為:﹣14.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為A(0,2),B(2,0),直線AB與反比例函數(shù)y=的圖象交于點(diǎn)C和點(diǎn)D(﹣1,a).
(1)求直線AB和反比例函數(shù)的解析式;
(2)求∠ACO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1、x2是關(guān)于x的一元二次方程x2+(3a-1)x+2a2-1=0的兩個(gè)實(shí)數(shù)根,使得(3x1-x2)(x1-3x2)=-80成立,求其實(shí)數(shù)a的可能值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校李老師布置了兩道解方程的作業(yè)題:
選用合適的方法解方程:
(1)x(x+1)=2x;(2)(x+1)(x﹣3)=7
以下是王萌同學(xué)的作業(yè):
解:(1)移項(xiàng),得x(x+1)﹣2x=0 分解因式得,x(x+1﹣2)=0 所以,x=0,或x﹣1=0 所以,x1=0,x2=1 | (2)變形得,(x+1)(x﹣3)=1×7 所以,x+1=7,x﹣3=1 解得,x1=6,x2=4 |
請(qǐng)你幫王萌檢查他的作業(yè)是否正確,把不正確的改正過來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校準(zhǔn)備給長(zhǎng)12米,寬8米的矩形室內(nèi)場(chǎng)地進(jìn)行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個(gè)全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點(diǎn)為矩形和菱形的對(duì)稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過矩形面積的,若設(shè)米.
甲 | 乙 | 丙 | |
單價(jià)(元/米2) |
(1)當(dāng)時(shí),求區(qū)域Ⅱ的面積.
(2)計(jì)劃在區(qū)域Ⅰ,Ⅱ分別鋪設(shè)甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設(shè)丙款白色瓷磚,
①在相同光照條件下,當(dāng)場(chǎng)地內(nèi)白色區(qū)域的面積越大,室內(nèi)光線亮度越好.當(dāng)為多少時(shí),室內(nèi)光線亮度最好,并求此時(shí)白色區(qū)域的面積.
②三種瓷磚的單價(jià)列表如下,均為正整數(shù),若當(dāng)米時(shí),購(gòu)買三款瓷磚的總費(fèi)用最少,且最少費(fèi)用為7200元,此時(shí)__________,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學(xué)校課程體系,某學(xué)校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學(xué)生選擇,每門課程被選到的機(jī)會(huì)均等.
(1)學(xué)生小紅計(jì)劃選修兩門課程,請(qǐng)寫出所有可能的選法;
(2)若學(xué)生小明和小剛各計(jì)劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形紙片,把紙片ABCD折疊,使點(diǎn)B恰好落在CD邊的中點(diǎn)E處, 折痕為AF,若CD=6,則AF等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點(diǎn)O在對(duì)角線BD上,以O(shè)D為半徑的⊙O與AD、BD分別交于點(diǎn)E、F,且∠ABE=∠DBC.
(1)求證:BE與⊙O相切;
(2)若,CD=2,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com