【題目】如圖,某校準(zhǔn)備給長12米,寬8米的矩形室內(nèi)場地進(jìn)行地面裝飾,現(xiàn)將其劃分為區(qū)域(菱形),區(qū)域4個(gè)全等的直角三角形),剩余空白部分記為區(qū)域;點(diǎn)為矩形和菱形的對(duì)稱中心,,,為了美觀,要求區(qū)域的面積不超過矩形面積的,若設(shè).

單價(jià)(元/2

1)當(dāng)時(shí),求區(qū)域的面積.

2)計(jì)劃在區(qū)域,分別鋪設(shè)甲,乙兩款不同的深色瓷磚,區(qū)域鋪設(shè)丙款白色瓷磚,

①在相同光照條件下,當(dāng)場地內(nèi)白色區(qū)域的面積越大,室內(nèi)光線亮度越好.當(dāng)為多少時(shí),室內(nèi)光線亮度最好,并求此時(shí)白色區(qū)域的面積.

②三種瓷磚的單價(jià)列表如下,均為正整數(shù),若當(dāng)米時(shí),購買三款瓷磚的總費(fèi)用最少,且最少費(fèi)用為7200元,此時(shí)__________,__________.

【答案】18m2;268m2;(3) 40,8

【解析】

1)根據(jù)中心對(duì)稱圖形性質(zhì)和,,,可得,即可解當(dāng)時(shí),4個(gè)全等直角三角形的面積;

2)白色區(qū)域面積即是矩形面積減去一二部分的面積,分別用含x的代數(shù)式表示出菱形和四個(gè)全等直角三角形的面積,列出含有x的解析式表示白色區(qū)域面積,并化成頂點(diǎn)式,根據(jù),,,求出自變量的取值范圍,再根據(jù)二次函數(shù)的增減性即可解答;

3)計(jì)算出x=2時(shí)各部分面積以及用含m、n的代數(shù)式表示出費(fèi)用,因?yàn)?/span>m,n均為正整數(shù),解得m=40,n=8.

1 為長方形和菱形的對(duì)稱中心,,∴

,,∴

∴當(dāng)時(shí),,

2)∵,

-

,,

解不等式組得

,結(jié)合圖像,當(dāng)時(shí),的增大而減小.

∴當(dāng)時(shí), 取得最大值為

3)∵當(dāng)時(shí),S=4x2=16 m2=12 m2=68m2,總費(fèi)用:16×2m+12×5n+68×2m=7200,化簡得:5n+14m=600,因?yàn)?/span>m,n均為正整數(shù),解得m=40,n=8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,拋物線yax2+bx+c經(jīng)過點(diǎn)A(﹣2,0)、B4,0)、C0,3)三點(diǎn).

1)試求拋物線的解析式;

2)點(diǎn)Py軸上的一個(gè)動(dòng)點(diǎn),連接PA,試求5PA+4PC的最小值;

3)如圖②,若直線l經(jīng)過點(diǎn)T(﹣4,0),Q為直線l上的動(dòng)點(diǎn),當(dāng)以A、B、Q為頂點(diǎn)所作的直角三角形有且僅有三個(gè)時(shí),試求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船航行到 B 處時(shí),測得小島 A 在船的北偏東 60°的方向,輪船從 B 處繼續(xù)向正東方向航行 20 海里到達(dá) C 處時(shí),測得小島 A 在北船的北偏東 30°的方向.

(1)若小島 A 到這艘輪船航行路線 BC 的距離是 AD,求 AD 的長.

(2)已知在小島周圍 17 海里內(nèi)有暗礁,若輪船不改變航向繼續(xù)向前行駛,試問輪船有無觸礁的危險(xiǎn)?(≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是長方形ABCD的邊AB上的點(diǎn),EFDEBC于點(diǎn)F

1)求證:△ADE∽△BEF;

2)設(shè)HED上一點(diǎn),以EH為直徑作ODFO相切于點(diǎn)G,若DHOH3,求圖中陰影部分的面積(結(jié)果保留到小數(shù)點(diǎn)后面第一位,1.73,π3.14).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以正五邊形的頂點(diǎn)為圓心,為半徑作圓弧交的延長線于點(diǎn),再以點(diǎn)為圓心,為半徑作圓弧交的延長線于,依次進(jìn)行……得到螺旋線,再順次連結(jié),,,,得到5塊陰影區(qū)域,若記它們的面積分別為,,,,,且滿足,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a2+10b2+c24aba2bc,則a2b+c_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識(shí)測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點(diǎn)在地面A處測得點(diǎn)M的仰角為、點(diǎn)N的仰角為,在B處測得點(diǎn)M的仰角為米,且A、BP三點(diǎn)在一直線上請(qǐng)根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.

參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖①所示是一個(gè)長為2m,寬為2n的長方形,用剪刀均分成四個(gè)小長方形,然后按圖②的方式拼成一個(gè)大正方形.

1)圖②中的大正方形的邊長等于   ,圖②中的小正方形的邊長等于   ;

2)圖②中的大正方形的面積等于   ,圖②中的小正方形的面積等于   ;圖①中每個(gè)小長方形的面積是   ;

3)觀察圖②,你能寫出(m+n2,(mn2,mn這三個(gè)代數(shù)式間的等量關(guān)系嗎?   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在線BCCD上運(yùn)動(dòng),且滿足∠EAF45°,AEAF分別與BD相交于點(diǎn)M、N.下列說法中:BE+DFEF;點(diǎn)A到線段EF的距離一定等于正方形的邊長;tanBAE,則tanDAF;BE2DF3,則SAEF18.其中結(jié)論正確的是__(將正確的序號(hào)寫在橫線上)

查看答案和解析>>

同步練習(xí)冊(cè)答案