闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗傜紒鈧笟鈧畷婊堫敇閻戝棙瀵岄梺闈涚墕濡鎱ㄨ缁辨帡鎮╅崘鑼紝闂佺粯渚楅崳锝嗘叏閳ь剟鏌曢崼婵囶棤闁告ɑ鎹囬弻鈩冨緞鐏炴垝娌繝銏㈡嚀濡繂鐣峰┑鍡╁悑闁糕剝鍔掔花濠氭⒑閸濆嫬鈧悂鎮樺┑瀣垫晜妞ゆ劑鍊楃壕濂稿级閸稑濡界€规洖鐬奸埀顒冾潐濞叉ḿ鏁幒妤嬬稏婵犻潧顑愰弫鍕煢濡警妲峰瑙勬礋濮婃椽宕ㄦ繝鍕窗闂佺ǹ瀛╂繛濠囧箚鐏炶В鏋庨柟鎯ь嚟閸橀亶姊洪崫鍕偍闁告柨鐭傞幃姗€鎮╅悽鐢碉紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃缂侇噮鍨抽幑銏犫槈閵忕姷顓洪梺鍝勫暊閸嬫捇鏌涢妶鍛ч柡灞剧洴婵$兘顢欓悡搴樻嫽闂備浇妗ㄧ粈浣该洪銏犺摕闁哄浄绱曢悿鈧梺鍝勬川閸婎偊濡烽敂杞扮盎闂佹寧妫侀褍鈻嶅澶嬬厵妞ゆ梻鐡斿▓婊呪偓瑙勬礃椤ㄥ棗顕ラ崟顒傜瘈濞达絽澹婂Λ婊堟⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介弫鍐磼濮樻唻绱卞┑鐘灱閸╂牠宕濋弴銏犲強闁靛鏅滈悡鐔兼煙闁箑鏋涢柛鏂款儔閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹪鐛笟鈧獮鎺楀箣濠垫劗鈧櫕绻濋悽闈涗粶闁瑰啿绻樺畷婵嗏枎閹惧疇鎽曢梺缁樻⒒閸樠呯矆閸曨垱鐓忛柛顐g箖椤ユ粍銇勮箛銉﹀
在創(chuàng)新素質(zhì)實(shí)踐行活動(dòng)中,某位同學(xué)參加了超市某種水果的銷售調(diào)查工作.已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)谡{(diào)查結(jié)束后的對(duì)話:
小明:如果以10元/千克的價(jià)格銷售,那么每天可以售出300千克;
小強(qiáng):如果以13元/千克的價(jià)格銷售,那么每天可獲利750元;
小亮:通過(guò)調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷售量與銷售單價(jià)之間存在一次函數(shù)關(guān)系.
(1)設(shè)超市每天該水果的銷售量是y(kg),銷售單價(jià)是x(元),寫出y與x的關(guān)系;
(2)在進(jìn)貨成本不超過(guò)1200元時(shí),銷售單價(jià)定為多少元可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)如果要使該水果每天的利潤(rùn)不低于600元,銷售單價(jià)應(yīng)在什么范圍內(nèi)?
【答案】分析:(1)求出當(dāng)售價(jià)是13時(shí),銷售量是150,設(shè)y與x的關(guān)系式是y=kx+b,把(10,300),(13,150)代入得到,求出方程組的解即可得出答案;
(2)由題意得出8(-50x+800)≤1200,求出x≥11,設(shè)利潤(rùn)是w,w=yx-8y=-50(x-12)2+800,設(shè)進(jìn)貨成本為P元
則P≤1200,即8(-50x+800)≤1200,解得x≥13.5,因?yàn)樵趯?duì)稱軸右邊,W隨x增大而減小,所以當(dāng)x=13.5時(shí),求出最大值即可;
(3)根據(jù)題意得:-50x2+1200x-6400≥600,求出不等式的解集即可.
解答:(1)解:=150,
設(shè)y與x的關(guān)系式是y=kx+b,
把(10,300),(13,150)代入得:,
解得:,
∴y=-50x+800,
答:y與x的關(guān)系是y=-50x+800.

(2)解:設(shè)利潤(rùn)是w,
w=yx-8y=(-50x+800)x-8(-50x+800)=-50x2+1200x-6400=-50(x-12)2+800,
∵a=-50<0,開(kāi)口向下,對(duì)稱軸是直線x=12,
設(shè)進(jìn)貨成本為P元
∴P≤1200,即8(-50x+800)≤1200,解得x≥13.5,
∴x=12(舍去)
∵在對(duì)稱軸右邊,W隨x增大而減小
∴當(dāng)x=13.5時(shí),W最大,W=687.5
答:在進(jìn)貨成本不超過(guò)1200元時(shí),銷售單價(jià)定為13.5元可獲得最大利潤(rùn),最大利潤(rùn)是687.5.

(3)解:根據(jù)題意得:-50x2+1200x-6400≥600,
解得:10≤x≤14,
答:如果要使該水果每天的利潤(rùn)不低于600元,銷售單價(jià)應(yīng)在10-14范圍內(nèi).
點(diǎn)評(píng):本題主要考查對(duì)求二次函數(shù)的解析式,用待定系數(shù)法求一次函數(shù)的解析式,解二元一次方程組,二次函數(shù)的最值,二次函數(shù)的頂點(diǎn)式等知識(shí)點(diǎn)的理解和掌握,把實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題是解此題的關(guān)鍵,題型較好,具有代表性,用的數(shù)學(xué)思想是轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在創(chuàng)新素質(zhì)實(shí)踐行活動(dòng)中,某位同學(xué)參加了超市某種水果的銷售調(diào)查工作.已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)谡{(diào)查結(jié)束后的對(duì)話:
小明:如果以10元/千克的價(jià)格銷售,那么每天可以售出300千克;
小強(qiáng):如果以13元/千克的價(jià)格銷售,那么每天可獲利750元;
小亮:通過(guò)調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷售量與銷售單價(jià)之間存在一次函數(shù)關(guān)系.
(1)設(shè)超市每天該水果的銷售量是y(kg),銷售單價(jià)是x(元),寫出y與x的關(guān)系;
(2)在進(jìn)貨成本不超過(guò)1200元時(shí),銷售單價(jià)定為多少元可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)如果要使該水果每天的利潤(rùn)不低于600元,銷售單價(jià)應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•硚口區(qū)模擬)在創(chuàng)新素質(zhì)實(shí)踐行活動(dòng)中,某校三位學(xué)生參與了超市某種水果的銷售調(diào)查工作,已知該水果的進(jìn)價(jià)為8元/千克,經(jīng)試銷發(fā)現(xiàn),每天的銷售量y(千克)與銷售單價(jià)x(元/千克)之間的關(guān)系可近似的看做一次函數(shù):y=-50x+800.
(1)設(shè)超市每天該水果的利潤(rùn)是W(元),寫出W與x之間的函數(shù)關(guān)系式;
(2)小明說(shuō)超市該水果每天的最大利潤(rùn)是780元,請(qǐng)通過(guò)計(jì)算說(shuō)明他的說(shuō)法對(duì)嗎?
(3)如果要使該水果每天的利潤(rùn)不低于600元,銷售單價(jià)應(yīng)該在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年山東省青島市中考數(shù)學(xué)模擬試卷(七)(解析版) 題型:解答題

在創(chuàng)新素質(zhì)實(shí)踐行活動(dòng)中,某位同學(xué)參加了超市某種水果的銷售調(diào)查工作.已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)谡{(diào)查結(jié)束后的對(duì)話:
小明:如果以10元/千克的價(jià)格銷售,那么每天可以售出300千克;
小強(qiáng):如果以13元/千克的價(jià)格銷售,那么每天可獲利750元;
小亮:通過(guò)調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷售量與銷售單價(jià)之間存在一次函數(shù)關(guān)系.
(1)設(shè)超市每天該水果的銷售量是y(kg),銷售單價(jià)是x(元),寫出y與x的關(guān)系;
(2)在進(jìn)貨成本不超過(guò)1200元時(shí),銷售單價(jià)定為多少元可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)如果要使該水果每天的利潤(rùn)不低于600元,銷售單價(jià)應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省武漢市硚口區(qū)三月調(diào)考九年級(jí)數(shù)學(xué)試卷(解析版) 題型:解答題

在創(chuàng)新素質(zhì)實(shí)踐行活動(dòng)中,某校三位學(xué)生參與了超市某種水果的銷售調(diào)查工作,已知該水果的進(jìn)價(jià)為8元/千克,經(jīng)試銷發(fā)現(xiàn),每天的銷售量y(千克)與銷售單價(jià)x(元/千克)之間的關(guān)系可近似的看做一次函數(shù):y=-50x+800.
(1)設(shè)超市每天該水果的利潤(rùn)是W(元),寫出W與x之間的函數(shù)關(guān)系式;
(2)小明說(shuō)超市該水果每天的最大利潤(rùn)是780元,請(qǐng)通過(guò)計(jì)算說(shuō)明他的說(shuō)法對(duì)嗎?
(3)如果要使該水果每天的利潤(rùn)不低于600元,銷售單價(jià)應(yīng)該在什么范圍內(nèi)?

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�