精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABCD中,點E在邊BC上,點F在邊AD的延長線上,且DF=BE=4,連接EF交CD于G.若 = ,求AD的長.

【答案】證明:∵四邊形ABCD是平行四邊形, ∴AD∥BC,AD=BC,
∵DF∥EC,
∴△DFG∽CEG,
= =
∴CE=6,
∴AD=BC=BE+CE=10
【解析】根據相似三角形的判定與性質,可得答案.
【考點精析】通過靈活運用平行四邊形的性質和相似三角形的判定與性質,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】學校食堂廚房的桌子上整齊地擺放著若干相同規(guī)格的碟子,碟子的個數與碟子的高度的關系如下表:

碟子的個數

碟子的高度(單位:cm

1

2

2

2+1.5

3

2+3

4

2+4.5

1)當桌子上放有x(個)碟子時,請寫出此時碟子的高度(用含x的式子表示);

2)分別從三個方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC的三個頂點坐標為A(-2.3)、B(-6,0)、C(-1,0)

(1) ABC繞坐標原點O旋轉180°,畫出圖形,并寫出點A的對應點A′ 的坐標________;

(2)ABC繞坐標原點O逆時針旋轉90°,

直接寫出點A的對應點A″的坐標___________;

(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,拋物線y=﹣x2+bx+c與x軸、y軸分別相交于點A(﹣1,0)、B(0,3)兩點,其頂點為D.
(1)求這條拋物線的解析式;
(2)若拋物線與x軸的另一個交點為E. 求△ODE的面積;拋物線的對稱軸上是否存在點P使得△PAB的周長最短.若存在請求出P點的坐標,若不存在說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解下列方程:

(1)x+2(5﹣3x)=15﹣3(7﹣5x

(2)

(3)

(4)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】古希臘著名的畢達哥拉斯學派把1,3,610這樣的數稱為三角形數,而把14,916這樣的數稱為正方形數.從圖中可以發(fā)現,任何一個大于1正方形數都可以看作兩個相鄰三角形數之和.下列等式中,符合這一規(guī)律的是(  )

A. 361521 B. 25916 C. 13310 D. 491831

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某村計劃對總長為1800m的道路進行改造,安排甲、乙兩個工程隊完成.已知甲隊每天能完成的道路長度是乙隊每天能完成的2倍,并且在獨立完成長為400m的道路時,甲隊比乙隊少用4天.

(1)求甲、乙兩工程隊每天能完成道路的長度分別是多少m?

(2)若村委每天需付給甲隊的道路改造費用為0.4萬元,乙隊為0.25萬元,要使這次的道路改造費用不超過8萬元,至少應安排甲隊工作多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC是邊長為4個等邊三角形,D為AB邊的中點,以CD為直徑畫圓,則圖中陰影部分的面積為(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某班將買一些乒乓球和乒乓球拍.了解信息如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價30元,乒乓球每盒定價5元;經洽談:甲店每買一副球拍贈一盒乒乓球;乙店全部按定價的9折優(yōu)惠.該班需球拍5副,乒乓球若干盒(不小于5).問:

(1)當購買乒乓球x盒時,兩種優(yōu)惠辦法各應付款多少元?(用含x的代數式表示)

(2)如果要購買15盒乒乓球時,請你去辦這件事,你打算去哪家商店購買?為什么?

查看答案和解析>>

同步練習冊答案