【題目】閱讀下面的解答過(guò)程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4-(y+2)2+4,∵(y+2)2≥0,∴(y+2)2+4≥4,∴y2+4y+8的最小值為4.仿照上面的解答過(guò)程,求x2-x+4的最小值和6-2x-x2的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC∽△ADE,∠BAC =∠ADE =90°,AB=4,AC=3,F是DE的中點(diǎn),若點(diǎn)E是直線BC上的動(dòng)點(diǎn),連接BF,則BF的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與 y軸交于點(diǎn)B(0,2),與反比例函數(shù)的圖象交于點(diǎn)A (4,-1).
(1)求反比例函數(shù)的表達(dá)式和一次函數(shù)表達(dá)式;
(2)若點(diǎn)C是y軸上一點(diǎn),且BC=BA,請(qǐng)直接寫(xiě)出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂(lè)獎(jiǎng).
(1)從獲得美術(shù)獎(jiǎng)和音樂(lè)獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;
(2)分別從獲得美術(shù)獎(jiǎng)、音樂(lè)獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹(shù)狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過(guò)A、B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=,求⊙O的半徑;
(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對(duì)稱(chēng)軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一貨輪在A處測(cè)得燈塔P在貨輪的北偏西23°的方向上,隨后貨輪以80海里/時(shí)的速度按北偏東30°的方向航行,1小時(shí)后到達(dá)B處,此時(shí)又測(cè)得燈塔P在貨輪的北偏西68°的方向上,求此時(shí)貨輪距燈塔P的距離PB.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校自主開(kāi)發(fā)了A書(shū)法、B閱讀,C繪畫(huà),D器樂(lè)四門(mén)選修課程供學(xué)生選擇,每門(mén)課程被選到的機(jī)會(huì)均等.
(1)若學(xué)生小玲計(jì)劃選修兩門(mén)課程,請(qǐng)寫(xiě)出她所有可能的選法;
(2)若學(xué)生小強(qiáng)和小明各計(jì)劃選修一門(mén)課程,則他們兩人恰好選修同一門(mén)課程的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市高鐵站將于今年年底使用,計(jì)劃在廣場(chǎng)內(nèi)種植A、B兩種花木共2000棵,若種植A種花木的數(shù)量比種植B種花木數(shù)量的3倍多400棵.
(1)求種植A、B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排12人同時(shí)種植這兩種花木,每人每天能種植A種花木40棵或B種花木30棵,應(yīng)分別安排多少人種植A種花木和B種花木,才能確保同時(shí)完成各自的任務(wù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com