【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線x軸相交于,C兩點(diǎn)y軸相交于點(diǎn)B

a0, 填“”或“ ;

若該拋物線關(guān)于直線對(duì)稱,求拋物線的函數(shù)表達(dá)式;

的條件下,若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為的面積為S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;

的條件下,若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使以點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

【答案】 ;2 S關(guān)于m的函數(shù)關(guān)系式為; 時(shí),S有最大值 坐標(biāo)為 ,

【解析】試題分析: 由開口向上,可知圖象與軸有兩個(gè)交點(diǎn),則

由對(duì)稱軸可知點(diǎn)坐標(biāo),然后把點(diǎn)的坐標(biāo)代入函數(shù)解析式,利用待定系數(shù)法求解即可;

根據(jù)圖形的割補(bǔ)法,可得二次函數(shù),根據(jù)拋物線的性質(zhì)求出第三象限內(nèi)二次函數(shù)的最值,然后即可得解;

利用直線與拋物線的解析式表示出點(diǎn)的坐標(biāo),然后求出的長(zhǎng)度,再根據(jù)平行四邊形的對(duì)邊相等列出算式,然后解關(guān)于的一元二次方程即可得解.

試題解析: ; ;

拋物線關(guān)于直線對(duì)稱, ,

兩點(diǎn)代入函數(shù)解析式,得

,

解得,

所以此函數(shù)解析式為:

點(diǎn)的橫坐標(biāo)為m,且點(diǎn)M在這條拋物線上,

點(diǎn)的坐標(biāo)為: ,

,

,

當(dāng)時(shí),S有最大值為: ,

答:S關(guān)于m的函數(shù)關(guān)系式為; 時(shí),S有最大值;

坐標(biāo)為 ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,ABCD,AECD于點(diǎn)CDEAE,垂足為EA=30°,求∠D的度數(shù).

(2)如圖,E,CBF上,ABDE,ACDF,BECF,試說明:ACDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,E,F分別是AB,DC上的點(diǎn),且,連接DE,BF,AF.

1)求證:四邊形DEBF是平行四邊形;

2)若AF平分,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條東西方向筆直的沿湖道路l上有AB兩個(gè)游船碼頭,觀光島嶼C在碼頭A的北偏東60°方向、在碼頭B的北偏西45°方向,AC4千米.那么碼頭AB之間的距離等于_____千米.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援雅安災(zāi)區(qū),某學(xué)校計(jì)劃用“義捐義賣”活動(dòng)中籌集的部分資金用于購(gòu)買A,B兩種型號(hào)的學(xué)習(xí)用品共1000件,已知A型學(xué)習(xí)用品的單價(jià)為20元,B型學(xué)習(xí)用品的單價(jià)為30元.

(1)若購(gòu)買這批學(xué)習(xí)用品用了26000元,則購(gòu)買A,B兩種學(xué)習(xí)用品各多少件?

(2)若購(gòu)買這批學(xué)習(xí)用品的錢不超過28000元,則最多購(gòu)買B型學(xué)習(xí)用品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解方程組的部分過程,回答下列問題

解方程組

現(xiàn)有兩位同學(xué)的解法如下:

解法一;由①,得x2y+5,③

把③代入②,得3(2y+5)2y3……

解法二:①﹣②,得﹣2x2……

(1)解法一使用的具體方法是________,解法二使用的具體方法是______,以上兩種方法的共同點(diǎn)是________

(2)請(qǐng)你任選一種解法,把完整的解題過程寫出來

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點(diǎn).

試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;

OB,在x軸上取點(diǎn)C,使,并求的面積;

直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=90,A是∠MON內(nèi)部的一點(diǎn),過點(diǎn)AAB⊥ON,垂點(diǎn)為點(diǎn)B,AB=3厘米,OB=4厘米,動(dòng)點(diǎn)E、F同時(shí)從O點(diǎn)出發(fā),點(diǎn)E1.5厘米/秒的速度沿ON方向運(yùn)動(dòng),點(diǎn)F2厘米/秒的速度沿OM方向運(yùn)動(dòng),EFOA交于點(diǎn)C,連接AE,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),點(diǎn)F隨之停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0)。

(1)當(dāng)t=1秒時(shí),ΔEOF與ΔABO是否相似?請(qǐng)說明理由。

(2)在運(yùn)動(dòng)過程中,不論t取何值時(shí),總有EF⊥OA,為什么?

3)連接AF,在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得SΔAEF=S四邊形ABOF ?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形記作在方格中,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,先將向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到

三個(gè)頂點(diǎn)的坐標(biāo)分別是:____________,______

在圖中畫出;

平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:____________、______

y軸有一點(diǎn)P,使面積相等,則P點(diǎn)的坐標(biāo)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案