【題目】在平面直角坐標(biāo)系xOy中,第一象限內(nèi)的點(diǎn)P在直線y=x上,過點(diǎn)P的直線交x軸正半軸于點(diǎn)A,交直線y=3x于點(diǎn)B,點(diǎn)B在第一象限內(nèi).
(1)如圖1,當(dāng)∠OAB=90°時(shí),求的值;
(2)當(dāng)點(diǎn)A的坐標(biāo)為(6,0),且BP=2AP時(shí),將過點(diǎn)A的拋物線y=﹣x2+mx上下方平移,使它過點(diǎn)B,求平移的方向和距離.
【答案】(1)5;(2)拋物線向下平移了個(gè)單位長(zhǎng)度.
【解析】
(1)設(shè)點(diǎn)A橫坐標(biāo)為a,由于∠OAB=90°,即AB⊥x軸,所以P、B橫坐標(biāo)也是a,分別代入直線解析式求P、B縱坐標(biāo),相減即能得到用a表示的BP、AP的值.
(2)分別過點(diǎn)P、B作x軸垂線,垂足分別為D、C,根據(jù)平行線分線段定理可得.設(shè)直線AB解析式為y=kx+b,把A坐標(biāo)代入得y=kx﹣6k.把直線AB解析式分別與直線OP、OB解析式聯(lián)立方程組,求得點(diǎn)P、B的橫坐標(biāo)(用k表示)即點(diǎn)D、C橫坐標(biāo),進(jìn)而得到用k表示CD、DA的式子.根據(jù)CD=2AD為等量關(guān)系列方程即求得k的值,即得到點(diǎn)B坐標(biāo).把點(diǎn)A代入原拋物線解析式求m,由于上下平移,故可在原拋物線解析式后+n以表示平移后的拋物線,把點(diǎn)B代入即求得n的值.n為負(fù)數(shù)時(shí)即表示向下平移.
(1)設(shè)點(diǎn)A坐標(biāo)為(a,0)(a>0)
∵∠OAB=90°,點(diǎn)B在直線y=3x上,點(diǎn)P在直線y=x上
(2)如圖,過點(diǎn)B作BC⊥x軸于點(diǎn)C,過點(diǎn)P作PD⊥x軸于點(diǎn)D
∴BC∥PD
∵BP=2AP
∴=2
∴CD=2DA
設(shè)直線AB解析式為:y=kx+b
∵A(6,0)
∴6k+b=0,得b=﹣6k
∴直線AB解析式為y=kx﹣6k
當(dāng)x=kx﹣6k時(shí),解得:x=
∴xD=xP=
當(dāng)3x=kx﹣6k時(shí),解得:x=
解得:k=﹣2
∴,即
∵拋物線y=﹣x2+mx過點(diǎn)A
∴﹣36+6m=0,解得:m=6
設(shè)平移后過點(diǎn)B的拋物線解析式為y=﹣x2+6x+n
∴
解得:n=﹣
∴拋物線向下平移了個(gè)單位長(zhǎng)度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,圖形G上點(diǎn)P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差y-x稱為點(diǎn)P的“坐標(biāo)差”,而圖形G上所有點(diǎn)的“坐標(biāo)差”中的最大值稱為圖形G的“特征值”
(1)點(diǎn)A(2,6)的“坐標(biāo)差”為________;
(2)求拋物線y=-x2+5.x+4的“特征值”;
(3)某二次函數(shù)y=-x2+bx+c(c≠0)的“特征值”為-1,點(diǎn)B與點(diǎn)C分別是此二次函數(shù)的圖象與x軸和y軸的交點(diǎn),且點(diǎn)B與點(diǎn)C的“坐標(biāo)差”相等,求此二次函數(shù)的解析式;
(4)二次函數(shù)y=-x2+px+q的圖象的頂點(diǎn)在“坐標(biāo)差”為2的一次函數(shù)的圖象上,四邊形DEFO是矩形,點(diǎn)E的坐標(biāo)為(7,3),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D在x軸上點(diǎn)下在x軸上,當(dāng)二次函數(shù)y=-x2+px+q的圖象與矩形的邊只有三個(gè)交點(diǎn)時(shí),求此二次函數(shù)的解析式及特征值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,身高都為1.6米的小芳、小麗來到溪江公園,準(zhǔn)備用她們所學(xué)的知識(shí)測(cè)算南塔的高度.如圖,小芳站在A處測(cè)得她看塔頂?shù)难鼋?/span> 為45,小麗站在B處(A、B與塔的軸心共線)測(cè)得她看塔頂?shù)难鼋?/span> 為30.她們又測(cè)出A、B兩點(diǎn)的距離為30米.假設(shè)她們的眼睛離頭頂都為10 cm,則可計(jì)算出塔高約為(結(jié)果精確到0.01,參考數(shù)據(jù):≈1.414,≈1.732)( ).
A.36.21米 B.37.71米 C.40.98米 D.42.48米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AB∥CD,BC⊥CD,AB=2,CD=3,在BC上取點(diǎn)P(P與B、C不重合)連接PA延長(zhǎng)至E,使PA=2AE,連接PD并延長(zhǎng)至F,使PD=3FD,以PE、PF為邊作平行四邊形,另一個(gè)頂點(diǎn)為G,則PG長(zhǎng)度的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班10名學(xué)生校服尺寸與對(duì)應(yīng)人數(shù)如圖所示,那么這10名學(xué)生校服尺寸的中位數(shù)為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知.
求樓間距AB;
若男生樓共30層,層高均為3m,請(qǐng)通過計(jì)算說明多少層以下會(huì)受到擋光的影響?參考數(shù)據(jù):,,,,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點(diǎn),AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當(dāng)AB=6時(shí),求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年4月22日是第50個(gè)世界地球日,某校在八年級(jí)5個(gè)班中,每班各選拔10名學(xué)生參加“環(huán)保知識(shí)競(jìng)賽”并評(píng)出了一、二、三等獎(jiǎng)各若干名,學(xué)校將獲獎(jiǎng)情況繪成如圖所示的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)求本次競(jìng)賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“二等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù);
(3)已知甲、乙、丙、丁4位同學(xué)獲得一等獎(jiǎng),學(xué)校將采取隨機(jī)抽簽的方式在4人中選派2人參加上級(jí)團(tuán)委組織的“愛護(hù)環(huán)境、保護(hù)地球”知識(shí)競(jìng)賽,請(qǐng)求出抽到的2人恰好是甲和乙的概率(用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的部分圖象如圖,則下列說法錯(cuò)誤的是( 。
A. 對(duì)稱軸是直線x=﹣1
B. abc<0
C. b2﹣4ac>0
D. 方程ax2+bx+c=0的根是x1=﹣3和x2=1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com